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Abstract 

This study addresses an axisymmetric problem within the framework of 

micropolar thermoviscoelasticity, governed by the Moore-Gibson-Thompson 

(MGT) heat conduction equation. The analysis incorporates non-local 

elasticity and hyperbolic two-temperature (HTT) effects under applied 

mechanical loading. By introducing appropriate potential functions, the 

governing system is reformulated into a dimensionless form and solved using 

Laplace and Hankel transform techniques. Boundary conditions involving a 

normally distributed mechanical force and a ramp-type thermal input are 

considered to examine their impact. Analytical expressions for 

displacements, stress components, tangential couple stress, conductive 

temperature, and thermodynamic temperature are derived in the 

transformed domain and subsequently recovered using a numerical 

inversion method. Graphical representations illustrate how variations in 

viscosity, non-locality, and HTT parameters influence thermal and 

mechanical responses. Special cases are also examined to validate the 

model's generality. This research holds relevance for industrial applications 

in steel manufacturing and petroleum engineering, as well as in 

geomechanical modeling, particularly in understanding stress and 

temperature behavior during seismic activities. 

Keywords: Micropolar Thermoviscoelasticity; Moore-Gibson-Thompson Equation; Hankel transform 

techniques; Hyperbolic Two-Temperature Model; Analytical Thermomechanical Modeling; Seismic 

Thermoelastic Simulation. 

1. Introduction 

Modeling the behavior of thermoviscoelastic materials continues to be a focal point in materials science and 
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engineering, where researchers seek robust frameworks to accurately capture thermomechanical responses. Among 

the significant advancements, the two-temperature (TT) theory introduced by Chen and Gurtin [1], and later 

expanded by Chen et al. [2], distinguishes between the thermodynamic temperature associated with mechanical 

interactions and the conductive temperature. Building upon this, Youssef [3] and Youssef and El-Bary [4] proposed 

generalized forms, including the hyperbolic two-temperature (HTT) theory, which further improve the classical 

models Hobiny, Abbas, and  Marin, [5] demonstrated the impact of HTT  on waves behavior in a semiconductor 

material containing spherical cavity. 

Eringen and Edelen [6] for small scale-structure problems introduced a non-local continuum mechanics theory. 

In contrast to local elasticity theory, which only considers the strain at a single point, nonlocal elasticity theory 

consider strain at every point in the medium. Micropolar elasticity, formulated by Eringen [7], allows for the 

consideration of micro-rotational effects and couple stresses, making it suitable for small-scale and high-frequency 

mechanical analyses. Marin [8] presented weak solution in elasticity of dipolar porous materials. Sharma, and Marin, 

[9] investigated reflection and transmission problem in micropolar thermoelastic with imperfect boundaries.  

 The classical coupled theory of thermoelasticity has been unable to effectively predict the outcomes during the 

examination of microstructures. As a result, generalized theories of thermoelasticity have played a crucial role in the 

analysis of this type of issue. The Moore-Gibson-Thomson model of generalized thermoelasticity, developed by 

Quintanilla [10] is one such model and has been widely used and studied by various researchers.   Marin et al. [11] 

provided theoretical foundations for the influence domain in dipolar materials by using MGT heat equation. 

Contributions by Sharma and Khator [12, 13] addressed energy generation and grid design using renewable sources.  

Bhatti, M.M., et al., [14], and Zeeshan, A., et al., [15] examined some significant problems of nano fluid under MHD 

response. Abouelregal, A.E., et al. [16] explored the problem of a thermo-piezoelectric functionally graded rotating 

rod by using MGT model. Sharma, Marin and Altenbach [17] investigated elastodynamics interactions in 

thermoelastic diffusion under non-local and phase lags. Marin et.al., [18] examined fundamental solution and 

Green’s function in photothermelastic under MGT model. 

The current study aims to explore the combined influence of viscosity, non-local effects, and the HTT model 

under the MGT heat equation. A deformation problem is analyzed in a micropolar thermoviscoelastic solid 

subjected to a normally distributed force and a ramp-type thermal input. The system of governing equations is 

solved using integral transforms, and results are numerically inverted and plotted to highlight the physical 

implications. Some unique cases are also listed. 

 

2. Fundamental Equations  

The field equations and constitutive relations in absence of body forces, body couples and 

heat source (Youssef and El-Bary [4], Eringen [7] and Quintanilla [10]) are as follows: 

  (1) 

   (2) 

    

 (3) 

        (4) 

    

 (5)  

                                                                                                                 (6) 

 

and   

   

  

  

 

where  
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( )  

 

being micropolar viscoelastic relaxation times, also  are viscoelastic 

constants, are Lame's constants, are micropolar constants,  is displacement 

vector,  is microrotation vector, ,  is coefficient for linear thermal 

expansion,  is component of couple stress tensor,  is thermal conductivity, t is time,  is  

conductive temperature,  are stress components, T is thermodynamic temperature,  is 

relaxation time, is density,  is specific heat,  is  Kronecker delta,   is hyperbolic two-

temperature parameter,  is reference temperature,  is alternating tensor,  is 

rate of the thermal conductivity,  are non-local parameters,  is Laplacian operator. 

 

Following cases arises: 

 (i) For L-S theory (1967) [15]:  

(ii) For Green-Naghdi–II theory (GN II) (1993) [25]:  

(iii) For Green-Naghdi–III theory (GN III) (1992) [14]:  
 

 

3. Formulation and solution of Problem 

We consider an axisymmetric problem in homogeneous, isotropic micropolar 

thermoviscoelastic half-space under MGT heat equation with non-local and HTT in the 

undeformed state . A cylindrical coordinate system  with axis of symmetry as z-axis 

pointing vertically downward into the medium is considered. For two-dimensional problem, we 

assume the components of displacement and microrotation vector as: 

 

 
      

 (7) 

 

Since we had taken symmetry about z-axis, so all the partial derivatives with respect to the 

variable  would be zero. 

 

Figure 1: Schematic representation of the problem 
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For further simplifications, following dimensionless quantities are taken as 

     

    (8)

 

 

where 

 

  

 

Using Helmholtz decomposition, the displacement components  and micro-rotational 

component  related to the scalar potential functions are taken as 

 

                (9) 

 

Equations (1) - (3) reduce to the following form after using equations (7) - (9) as: 

 

                              (10) 

                                                                                                         

  

                                                                                      (11)

 

                

             (12)

                                                                                                                           

                                          (13) 

Making use of (7) - (8) in (4) - (5), yield 

   

                                       (14)          

                 (15) 

                   (16) 

 

where  and are given in Appendix I. 

 

We define Laplace transform and Hankel transform as: 

 

                                                (17)                                                                                                    

 

and 

                         (18) 

 



724 Kunal Sharma et.al. 

where p denotes Laplace parameter,  represents Hankel's parameter and is Bessel function 

of first kind of order n.  

Appling Laplace transform and Hankel transform defined by (17) - (18) on (6), we get 

 

 
 

where        (19)

  

 

Using equations (17) - (19) on equations (10) - (13) and after simplification, we get 

 

       

 (20) 

        (21) 

where symbols are defined in Appendix-II.  

 

The roots of characteristic equation  

 

 
 

are  and the roots of characteristic equation  

 

 
  

are . The bounded solution of equation (20) and (21) are written as 

 

         (22) 

                    (23) 

                    (24) 

         (25)

  

where,  are arbitrary constants, and are 

coupling constants, represented defined in Appendix III. 
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4. Boundary Conditions 

 

The appropriate boundary conditions at  are written as:  

 

                  (26) 

 

where 

    (27) 

Here,  is magnitude of the force,  is a constant temperature applied at the boundary 

surface, t is time, is Dirac-delta function and H () is known as Heaviside step function. 

Employing the transforms defined by (17)- (18) on (26) - (27), we get: 

 

             (28) 

 

where 

     .       (29)

  

 

Substituting the values of   and from (22)-(25) in the boundary conditions (28) 

with the conditions (9), (14)-(16), (17)-(19) after some algebraic simplifications, we obtain the 

components of displacement, stresses, tangential couple stress, conductive temperature, and 

thermodynamic temperature as follows 

 

 

                                                                                                                                     (30) 

                                                                                                                           (31) 

 

      

                                                                                                                (32) 

     

                                                                                                                           (33)

  

     

                                                                                                                           (34) 

      

                                                                                                                (35) 

      (36)

  

where all symbols are defined in Appendix-IV. 
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5. Inversion of Transformations 

 

To obtain the solution of the problem in physical domain, we need to invert the transforms as 

in (30) - (36). Here the displacement components, stresses, tangential couple stress, conductive 

temperature and thermodynamic temperature are of the form . For getting the function 

 in the physical domain, we followed Sharma,et.al. [17]. 

 

6. Special Cases 

 

i) The above results are reduced for MGT thermoviscoelastic half-space with non-local and 

HTT parameters when  in equations (30)-(36). 

 

ii) If , then corressponding expressions given by equations (30)-(36) 

have been reduced to micropolar thermoviscoelastic half-space for classical theory with non-

local and HTT effects. 

 

iii) Considering  in equations (30)-(36), we get results for micropolar 

thermoviscoelastic medium with one relaxation time along with impacts of non-local and HTT. 

 

iv) The expressions from equations (30)-(36) reduce for micropolar thermoviscoelastic 

medium witout enegy dissipation along non-local and HTT effects when 

 are considered. 

 

v) If , then we obtained results from equations (30)-(36) for 

micropolar thermoviscoelastic half-space with energy dissipation under non-local and HTT 

effects. 
 

7. Discussion and Implementation of Numerical Solutions 

 

The numerical calculations are carried out for different cases to study the effects of various 

parameters,  

(i) hyperbolic two-temperature (HTT) and viscosity (ii) non-local and  parameters, in 

micropolar thermoviscoelastic medium based on MGT heat equation under normal distributed 

force and ramp type thermal source. 

The following parameters are taken for Magnesium crystal in numerical computations:  

Following Eringen [19], the values of micropolar constants are 

 

   

  

 

Thermal parameters are given by (Dhaliwal and Singh [20]): 
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The relevant parameters used for numerical computation can be expressed as 

    

 

7.1. Impact of non-Local parameters 

 

We consider HTT parameter and viscosity parameters for the range    

The computation of graphs is as following: 

The curves in presence of both non-local parameters  and  with viscosity 

are represented by solid black line. 

The curves in presence of only i.e.,  and  with viscosity is represented by 

big dashed blue line. 

The curves in presence of only  i.e.,  and with viscosity is represented by 

small dashed orange line. 

The curves in absence of both non-local parameters  and  with viscosity is 

represented by big dashed pink line with centered symbol circle (o). 

 

7.2. Normal Force over Circular Region 

 

Figure 1 illustrates the behavior of  vs. r. It is noticed that, the values of  shows 

decreasing trend in the range 0  for all considered cases with a greater decrement for 

 whereas opposite trend is noticed in magnitude of  for 

 compared to 

(  respectively, in the remaining range. 

 

Figure 2 is a plot of  vs. r. It is evident that follows a similar pattern across all models, 

with substantial differences in their magnitudes in the range 0  whereas reverse 

behaviour is noticed for  compared to 

(  respectively, in the remaining range but 

magnitude of  is higher for  

 

Figure 3 demonstrates that the magnitude of  decreases in the ranges 0.20 , 

2.2  while the opposite trend is noticed in the remaining interval for 

. Furthermore, the magnitude of is shown 

mirror image in absence of non-local parameter when compared with  

across entire range except some values of r.  

 

Figure 4 exhibits variations of  vs. r. It is noticed that the magnitude of φ follows similar 

trend in absence of non-local parameters and presence of non-local parameter only whereas 

magnitude of φ declines throughout entire range for 

 with significant difference in their 

magnitudes.  
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Fig.1 Variation of Normal stress  w.r.t.  r 

 
Fig.2 Variation of Tangential stress  w.r.t.   

 
Fig.3 Variation of Tangential Couple stress  w.r.t.   
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Fig.4 Variation of Conductive temperature  w.r.t.   

 

 
Fig.5 Variation of Normal stress  w.r.t.  r 

 
Fig.6 Variation of Tangential stress  w.r.t.   

7.3. Concentrated Thermal Source  

Figure 5 depicts the behavior of  vs. r. It is noticed that close to   the loading surface, the 

magnitude of  rises for all examined cases.  As r increases,  display an oscillatory pattern 

across all cases, with highest magnitude occurring in absence of non-local parameters. 
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Figure 6 present variations of  vs. r. It is clear that exhibits a trend similar to that of 

,though  their magnitudes differ significantly. 

Figure 7 is a plot of   vs. r. It is evident that the magnitude of decreases witin the 

intervals  0 , 2  while the opposite trend is noticed in the remaining 

interval for all examined  cases but magnitude of   is higher for ( . 

The plot of  vs. r is illustrated in figure 8. It is noted that although the overall pattern of  

remains consistent across all considered cases but magnitude of is lowest when non-local 

parameter   is absent  
 

 
Fig.7 Variation of Tangential Couple stress  w.r.t.   

 
Fig.8 Variation of Conductive temperature  w.r.t.   

 

7.4. Impact of HTT and Viscosity 

We take non-local parameters  and  for the range The 

computation of graphs is as following: 

• In presence of HTT with viscosity is represented by solid black line (WVHT). 

• In presence of HTT without viscosity parameters is represented by big dashed blue line 

(WOVHT). 
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• In absence of HTT with viscosity parameters is represented by small dashed orange line 

(WVT). 

• In absence of HTT without viscosity parameters is represented by big dashed pink line 

with centered symbol circle (o) (WOVT). 

 
Fig.9 Variation of Normal stress  w.r.t.  r 

 
Fig.10 Variation of Tangential stress  w.r.t.   

 

7.5. Normal Force over Circular Region 

Figure 9 depicts the variations of  vs. r. It is noticed that, for all considered cases the 

magnitude of   decreases within the interval 0  whereas beyond this range an 

increasing trend is noted attributed to the absence of HTT parameter. 

Figure 10 presents the of plot of  vs. r. It is evident that exhibits an oscillatory trend for 

WVT and WOVT cases, while a descending trend is seen for WVHT and WOVHT.  

Figure 11 depicts the variations of  vs. r. It is noticed that presences of HTT parameter, 

causes   to display an opposite trend in WVHT and WOVHT cases when compared to WVT 

and WOVT, specifically within the range 0  Beyond this range, all cases sxhibits a 

similar pattern.  

Figure 12 illustrate the behavior of  vs. r. The magnitude of φ follows an oscillatory pattern 

with an overall decreasing trend all across cases, with the WOVT case depicting lowest 

magnitude. 
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Fig.11 Variation of Tangential Couple stress  w.r.t.   

 
Fig.12 Variation of Conductive temperature  w.r.t.   

 

 
Fig.13 Variation of Normal stress  w.r.t.  r 

 
Fig.14 Variation of Tangential stress  w.r.t.   
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Fig.15 Variation of Tangential Couple stress  w.r.t.   

 
Fig.16 Variation of Conductive temperature  w.r.t.   

 

7.6. Concentrated Thermal Source  

Figure 13 displays how tzz varies with radial displacement. Near the loading surface, its 

magnitude initially increases and then exhibits oscillatory behaviour for all considered scenarios 

as radial displacement increases. 

Figure 14 presents the variation of tzr  versus radial displacement. Although all cases follow a 

similar trend, the magnitude tzr  is found to be lowest for the WOVHT case. 

Figure 15 shows the variation of mzθ with respect to radial displacement. It is noticed that the 

magnitude of mzθ depicts opposite trend for WVHT and WVT when compared with WOVHT 

and WOVT respectively in the range 0≤r≤1, while in the remaining range, all cases exhibit 

similar trends. 

Figure 16 illustrates the distribution of ϕ against r. Although the general pattern remains 

consistent across all cases, the WVHT configuration results in a higher magnitude of ϕ compared 

to WOVHT, attributed to the influence of viscosity parameters. 

 

8. Conclusions 

This study addresses a two-dimensional axisymmetric problem based on the Moore-Gibson-

Thompson (MGT) heat conduction model, incorporating the effects of hyperbolic two-

temperature (HTT), non-local, and viscosity parameters. The governing equations are 

reformulated in a dimensionless framework using appropriate potential functions. These 

transformed equations are solved analytically through Laplace and Hankel transforms, and the 

physical field quantities—such as displacement components, stress components, tangential 

couple stress, conductive temperature, and thermodynamic temperature—are retrieved in the 

original domain via numerical inversion techniques. 

The numerical analysis investigates the influence of HTT, non-locality, and viscosity on the 
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physical responses under both mechanical loading and thermal excitation. The following 

observations emerge from the study: 

1. The inclusion of non-local effects leads to oscillatory behavior in normal stress, 

tangential stress, tangential couple stress, and conductive temperature under the 

application of a thermal source. 

2. When a normal force is applied over a circular boundary region, non-local parameters 

amplify the magnitudes of normal stress, tangential stress, and conductive temperature. 

3. In the presence of the HTT parameter, the viscosity term notably enhances the tangential 

stress and tangential couple stress under mechanical loading. 

4. Under thermal loading conditions, the presence of both viscosity and HTT parameters 

results in elevated values of normal stress, tangential stress, tangential couple stress, and 

conductive temperature compared to other scenarios. 

The significance of this research lies in its application to real-world systems, particularly 

those involving complex material behavior and structural geometries.The theoretical model 

developed here offers practical insights relevant to domains such as geomechanics, seismic 

analysis, soil-structure interactions, and broader applications within the field of micropolar 

thermoviscoelasticity. 
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