[1] D. Chandrasekharaiah, Hyperbolic thermoelasticity: a review of recent literature, 1998.
[2] A. Green, P. Naghdi, Thermoelasticity without energy dissipation, Journal of elasticity, Vol. 31, No. 3, pp. 189-208, 1993.
[3] A. E. Green, P. Naghdi, On thermodynamics and the nature of the second law, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, Vol. 357, No. 1690, pp. 253-270, 1977.
[4] L. Nappa, Spatial decay estimates for the evolution equations of linear thermoelasticity without energy dissipation, Journal of thermal stresses, Vol. 21, No. 5, pp. 581-592, 1998.
[5] D. S. Chandrasekharaiah, A note on the uniqueness of solution in the linear theory of thermoelasticity without energy dissipation, Journal of Elasticity, Vol. 43, No. 3, pp. 279-283, 1996/06/01, 1996.
[6] D. Ieşn, ON THE THEORY OF THERMOELASTICITY WITHOUT ENERGY DISSIPATION, Journal of Thermal Stresses, Vol. 21, No. 3-4, pp. 295-307, 1998/04/01, 1998.
[7] R. Quintanilla, Existence in thermoelasticity without energy dissipation, Journal of thermal stresses, Vol. 25, No. 2, pp. 195-202, 2002.
[8] S. Chirită, Spatial decay estimates for solutions describing harmonic vibrations in a thermoelastic cylinder, Journal of thermal stresses, Vol. 18, No. 4, pp. 421-436, 1995.
[9] J. N. Flavin, R. J. Knops, Some spatial decay estimates in continuum dynamics, Journal of Elasticity, Vol. 17, No. 3, pp. 249-264, 1987/01/01, 1987.
[10] M. Ciarletta, A theory of micropolar thermoelasticity without energy dissipation, Journal of Thermal Stresses, Vol. 22, No. 6, pp. 581-594, 1999.
[11] M. Marin, On weak solutions in elasticity of dipolar bodies with voids, Journal of Computational and Applied Mathematics, Vol. 82, No. 1, pp. 291-297, 1997/09/15/, 1997.
[12] M. Marin, Lagrange identity method for microstretch thermoelastic materials, Journal of Mathematical Analysis and Applications, Vol. 363, No. 1, pp. 275-286, 2010/03/01/, 2010.
[13] L. Codarcea-Munteanu, M. Marin, Influence of Geometric Equations in Mixed Problem of Porous Micromorphic Bodies with Microtemperature, Mathematics, Vol. 8, No. 8, pp. 1386, 2020.
[14] M. Marin, S. Vlase, I. Fudulu, G. Precup, Effect of Voids and Internal State Variables in Elasticity of Porous Bodies with Dipolar Structure, Mathematics, Vol. 9, No. 21, pp. 2741, 2021.
[15] A. Hobiny, I. Abbas, M. Marin, The Influences of the Hyperbolic Two-Temperatures Theory on Waves Propagation in a Semiconductor Material Containing Spherical Cavity, Mathematics, Vol. 10, No. 1, pp. 121, 2022.
[16] M. Marin, I. M. Fudulu, S. Vlase, On some qualitative results in thermodynamics of Cosserat bodies, Boundary Value Problems, Vol. 2022, No. 1, pp. 69, 2022/09/26, 2022.
[17] M. M. Bhatti, M. Marin, R. Ellahi, I. M. Fudulu, Insight into the dynamics of EMHD hybrid nanofluid (ZnO/CuO-SA) flow through a pipe for geothermal energy applications, Journal of Thermal Analysis and Calorimetry, Vol. 148, No. 24, pp. 14261-14273, 2023/12/01, 2023.
[18] A. K. Yadav, C. Erasmo, M. Marin, M. I. A. and Othman, Reflection of hygrothermal waves in a Nonlocal Theory of coupled thermo-elasticity, Mechanics of Advanced Materials and Structures, Vol. 31, No. 5, pp. 1083-1096, 2024/03/03, 2024.
[19] N. Elboughdiri, J. Khurram, B. M. M., R. S. F., K. S. and Mekheimer, Effects of thermal and momentum slip on magnetized viscoplastic fluids: A study using non-Darcy drag and Rosseland approximation, Separation Science and Technology, Vol. 60, No. 8, pp. 1064-1082, 2025/05/24, 2025.
[20] A. Yusuf, M. M. Bhatti, C. M. Khalique, Computational study of the thermophysical properties of graphene oxide/vacuum residue nanofluids for enhanced oil recovery, Journal of Thermal Analysis and Calorimetry, Vol. 150, No. 1, pp. 771-783, 2025/01/01, 2025.