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Abstract 

A cylinder with a prismatic structure is considered and this is "filled" with a 

thermoelastic material with the Cosserat structure. It is supposed that on the 

lateral surface of the cylinder there are no body forces, or body couple nor 

heat supply. But, on the base of cylinder, a microrotation is given, which is 

time-dependent, a displacement, which is also time-dependent, and a thermal 

displacement is also prescribed. All these loads are assumed to be harmonic 

functions in time and from their corroborated action, the movement of the 

body under consideration is induced. We will define a measure associated 

with the vibration that corresponds to the steady state. Assuming that there 

is a certain critical frequency and we can suppose that any excitation 

frequency is lower than the critical one, we will be able to obtain an 

estimation regarding the spatial decay. 
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1. Main text 

In the classical theory of thermoelasticity, heat flow is based on Fourier’s law, which implies energy dissipation 

and allows heat to be transmitted in the form of thermal waves at infinite speed. In contrast to the classical theory 

thermoelasticity, the theory of thermoelastic bodies without energy dissipation permits the transmission of heat as 

thermal waves at finite speed. 

The theory of this type of body that we are addressing in our study was introduced by the French Cosserat 

brothers since 1909. It is known, the deformation in this theory is evaluated by a vector of displacement and a vector 

of independent rotation. In this theory the heat flow is described with finite propagation speed. There are other 

hyperbolic theories that describe this type of propagation which some researchers call theories of second sound. 

Some of these theories are described in the study [1] by Chandrasekharaiah. It is considered that the first approaches 

in the theory of thermoelastic bodies without energy dissipation were made by Green and Naghdi [2]. They 

introduced a so-called thermal displacement, with regards to the usual temperature. In Green and Naghdi [3] the 

same authors postulated a general entropy balance. Nappa in [4] approaces the linear theory of homogeneous and 
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isotropic materials without energy dissipation and obtain some spatial energy bounds. In the same context of 

thermoelasticity without energy dissipation Chandrasekharaiah [5] obtained the uniqueness of solution for the mixed 

problem, Iesan [6] deduced some continuous dependence estimates, while Quintanilla [7] addresses the existence of 

the solution. 

In this present study the spatial behavior of some vibrations, which are harmonic in time, within the linear theory 

of thermoelasticity, for Cosserat bodies without dissipation energy. 

Several "a priori" estimations of the amplitude of vibrations, which are harmonic in time, are demonstrated with 

the help of some auxiliary identities. The evolution of the vibration amplitude is related to the base, which is 

exposed to the loads mentioned above, respecting the condition that the vibration frequency is higher than the 

declared critical frequency. 

Chirita in [8] studied spatial evolution vibrations in the linear classical thermoelasticity. He uses the same 

technique as that exhibited by Flavin and Knops in [9], in the case of low frequency. The exponential estimates are 

obtained provided that the constitutive coefficients are positive definite tensors. 

Ciarletta proposed in [10] a theory of thermoelastic micropolar bodies that, because it is without energy 

dissipation, can assure the propagation of the waves, of thermal type, at a finite speed. 

Some concrete and practical issues related to bodies with generalized structures can be found in the papers [11-

20]. 

Regarding the plane of our study, as usual, first are written down the main differential equations, initial data and 

boundary conditions for the mixed problem, considered within context of thermoelastic Cosserat bodies without 

energy dissipation. After that, there are proven certain differential identities for certain integrals in cross-sectional 

domains. With the help of these identities, some estimates are obtained that describe the evolution of the amplitude 

evolves, regarding the distance until the base that is exciting. The condition is respected that the frequency of 

vibrations must be at least as frequent as is considered critical. be greater than a certain critical value.  

 

2. Main equations and conditions 

We will work in a domain D of three-dimensional Euclidian space, which is occupied, in its initial configuration 

by a Cosserat homogeneous material. The boundary of D is denoted by  and  is the notation for the closure of 

.  

A system of fixed rectangular Cartesian axes is used, and vectors and tensors are denoted using boldface 

notation. All points in  are depending on spatial variable with the components  and the temporal variable 

. In the case there is no likehood of confusion the time argument and the spatial argument of a function 

can be omitted. The differentiation with respect to time  and the diferentiation with respect to the variable  is 

denoted by the subscript  preceded by a comma, . 

As in [5], the basic equations governing the theory of thermoelasticity of Cosserat bodies without energy 

dissipation are: 

- the motion equations:  

 

  

  (1) 

 

- the energy equation:  

 

  (2) 

 

All these equations are satisfied for any  

The constitutive equations, in the case that the solid, in its initial reference has a center of symmetry at each 

point, are defined for any  by:  

 

  

  (3) 
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The tensors of deformation,  and , which appear in equations (3) are defined by means of the following 

kinematic equations:  

  (4) 

for all  

In order to complete the above system of equations, we add the following heat flow equation:  

  (5) 

which is satisfied by any  

The notations used in the above equations are:  - the displacement vector,  - the microrotatia 

vector,  - the tensor of stress,  - the couple tensor of stress,  - the vector of the heat conduction,  - 

the entropy per unit mass,  - the density mass, constant in the reference state,  - the temperature, which in the 

reference state has constant value ,  - the inertia tensor,  - the vector of the thermal displacement gradient, 

 - the vector of the external body force,  - the vector of the external body couple,  - external rate of the heat 

supply and  represents the alternating symbol. 

The coefficients from equations (3), i.e., , , , , ,  and  are constant material 

characteristics which satisfy the next symmetry relations:  

  (6) 

In order to obtain the above constitutive equations, it is used the free energy  defined by:  

  

  (7) 

Above we denoted by  the specific heat and  is the notation for the thermal displacement with regard to the 

variation of the temperature, namely:  

  (8) 

Considering the constitutive equations (3) and the kinematic equations (4), from motion equations (1) and the 

energy equation (2), it is obtained the following system of differential equations relative to the displacements , 

the microrotations  and the thermal displacements :  

  

  

             (9) 

  

that are satisfied for all  

 

3. Preliminary results 

A cross-section  of a prismatic cylinder is considered, having a boundary of section denoted by , which is 

supposed be piecewise continuously differentiable. The Cartesian rectangular system of axes is chosen so that its 

origin is in the center of the cylinder base. Also, to simplify writing, the positive axis will be denoted by  and 

it is directed along the cylinder. The length of the cylinder is considered to be , so that the lateral border of cylinder 

is then . The material from the prismatic cylinder is a homogeneous and anisotropic Cosserat 

body. 

It is supposed that that on the lateral boundary surface of cylinder there is null body force, null couple force, null 

heat supply and, zero displacements, zero microrotations and zero thermal displacements, that is the cylinder is free 

of load on the lateral boundary surface. The displacements, microrotations and thermal displacements appear over 

the base of cylinder and are assumed harmonic in time. 

Therefore, we need to add the following boundary relations on the lateral surface  

 

    (10) 
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and the next boundary relations on the base:  

  

     (11) 

 

in which ,  and  are given smooth functions,  is a given constant and 

 is the notation for the complex unit. 

Due to the loads considered in (11), inside the cylinder appear some vibrations which are harmonic in time and 

have the following form:  

 

  

    (12) 

  

The components of the vibrations amplitude, that is, , satisfy the next system of equations:  

  

  

   (13) 

  

For the lateral boundary we have the conditions:  

 

       (14) 

 

while the base boundary relations get the form:  

 

  

       (15) 

 

If the cylinder is finite, a condition on its upper base is required, i.e., on . Chirita in [4] and Ciarletta in [5] 

studied the spatial behavior of the amplitude for a forced oscillation in the case of rhombic thermoelastic materials, 

provided that the excitation frequency is lower than a certain critical frequency. 

 

The main goal of this study is to estimate how the amplitude of oscillation evolves with axial distance from the 

point of excitation.  

In what follows we consider the mixed problem denoted by  and consists of the system of differential equations 

(13), the lateral boundary relations (14) and the conditions on the base boundary (15). The following notation is 

used:  

The four auxiliary identities which we demonstrate in the following will prove to be useful in obtaining the main 

result of our study.  

 

Theorem 1. If the ordered array  is a solution of the boundary value problem , then there are 

satisfied the following four equalities: 

  

  

  

    (16) 
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       (17) 

     

  

  

      (18) 

                    

       

   (19) 

Above, for a field , its complex conjugate was denoted by . 

 

Proof. With the help of equations (13)  and (13)  we can obtain the next equality:  

  

  

      (20) 

  

  

  

After simple calculations, this relation receives the form:  

  

  

  

      (21) 
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Now, we integrate the equality (21) over the domain . Applying the theorem of divergence and using the 

lateral relations from (14), we obtain the equality (16). 

Taking into account once again the equations (13)  and (13) , we get the next equality:  

  

  

      (22) 

  

  

  

 After simple calculations, this relation receives the form:  

  

  

      (23) 

  

  

Now, we integrate equality (23) over the domain . Applying the theorem of divergence and using the lateral 

relations from (14), we arrive at the equality (17). 

This time we consider the equation (13) , so that after similar calculations it is obtained the equality:  

  

    (24) 

After simple calculations, this relation receives the form:  

  

     (25) 

Now, we integrate equality (25) over the domain . Applying the theorem of divergence and using the lateral 

relations from (14), we arrive at the equality (18). 

At the end, we will use once again the equation (13)  to obtain:  
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    (26) 

After simple calculations, this relation receives the form:  

  

     (27) 

Finally, we integrate equality (27) over the domain . Applying the theorem of divergence and using the 

lateral relations from (14), we arrive at equality (19). 

In this way, the proof of Theorem 1 is finished.  

Two more auxiliary identities will be obtained in the next theorem. Our main result will also be based on these 

two auxiliary identities. 

 

Theorem 2.  If the ordered array   is a solution of the boundary value problem , then there are 

satisfied the following two equalities:  

  

  

  

  

  

  

    (28) 

  

  

  

  

  

 

 

 

  

  

       (29) 
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Proof. Taking into account equations (13)  and (13) , the following equality is obtained:  

  

  

  

    (30) 

  

  

After simple calculations, this relation receives the form:  

  

  

  

  

  

      (31) 

  

  

  

  

We can rewrite this equality as follows:  

  

  

  

  

  

  

      (32) 
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Let us integrate equality (32) over the domain . Applying the theorem of divergence and using the lateral 

relations from (14), we arrive at equality:  

  

  

  

  

  

  

  

  

      (33) 

  

  

  

  

  

  

  

  
With the help of the lateral boundary condition (14), we conclude that  

         (34) 

 Denoting by  the components of the unit normal to  and by  the components of the unit vector tangent 

to , on the curve  we have  
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where  is the tangential derivative. 

Considering the lateral boundary relation (14) we obtain that on the curve  we have , so that 

the derivative becomes:  

         (35) 

If we take into account the relations (34) and (35), we can write the last integral from (33) in the form:  

  

     (36) 

  

The other integrals in (33) become:  

  

  

 

  

       (37) 

  

  

The results from equalities (36) and (37) are replaced in identity (33), so that we obtain the relation (28), that is, 

first relation of Theorem 2. 

In order to obtain relation (29), we begin with the following identity:  

  

   (38) 

After simple calculations, this relation receives the form:  

  

   (39) 

  

We can rewrite this equality in the following form:  

  

        (40) 

  

Let us integrate the relation (40) over the domain . Applying the theorem of divergence and using the 

lateral relations from (14), we arrive at equality:  
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            (41) 

  

  

As we showed above, on the curve , the lateral boundary condition lead to:  

  

so that, the relation (41) implies (29). The proof of Theorem 2 is finished.  

In the following theorem we will prove two conservation laws which will be used to derive a priori estimation on 

a solution of the mixed problem . 

 

Theorem 3.  If the ordered array   is a solution of the boundary value problem , then take place 

the following two conservation laws: 

  

  

  (42) 

  

  

  

  

  

    (43) 

  

  

Proof. In order to obtain the (42) we begin by considering again the equations (13)  and (13)  and deduce the 

next equality:  

  

  

  

   (44) 

  



622 M. Marin et al. 

  

After simple calculations, this relation receives the form:  

  

  

  (45) 

  

  

  

Let us integrate equality (45) over the domain . Applying the theorem of divergence and using the lateral 

relations from (14), we arrive at equality:  

 

    (46) 

  

  

Based on equations (13) , we can write:  

  

    (47) 

and this equality can be written in the form:  

     

      (48) 

  

 

Let us integrate equality (48) over the domain . Applying the theorem of divergence and using the lateral 

relations from (14), we arrive at equality:  

 

   (49) 

  

By combining equalities (49) and (46) we are led to equality (42).  

In order to obtain the conservation law (43) we just need to equalize the right-side members of relations (17) and 

(19). In this way, the proof of Theorem 3 is finished.  

We can obtain different measures for the amplitude  by combining the relations (16)-(19) from 

Theorem 1 with the identities (28)-(29) of Theorem 2 and the conservation laws (42)-(43) from Theorem 3. Based 
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on these measures, it is possible to deduce some spatial estimations in order to characterize the spatial evolution of 

the respective amplitude. 

First such kind of estimate is deduced in the next theorem. 

Theorem 4.  If the ordered array   is a solution of the boundary value problem , then takes place 

the following estimate:  

 

  

  

  

     (50) 

  

  

  

  

 

Proof. This estimation can be immediately obtained by combining relations (16) and (18).  

 

In the following theorem is formulated another a priori estimation on the amplitude. 

 

Theorem 5.  If the ordered array  is a solution of the boundary value problem , then takes place 

the following estimate:  

 

  

  

  

  

  

  

  

    (51) 
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Proof. The estimate (51) is immediately obtained by combining the results from relations (28) and (29), from 

Theorem 2, with the estimate (50) of Theorem 4.  

Based on identity (51), we will obtain our main result regarding the spatial behavior of amplitude. First, we need 

to specify the assumptions we need to obtain rigorous results, which are not very restrictive, are frequently used in 

mechanics of solids. So, we suppose that the thermoelastic tensors of Cosserat bodies satisfy the condition of strong 

ellipticity, that is, 

  

 

 

  (52) 

 

 

 

Other conditions we impose to the specific heat  and to the tensor of conductivity , namely:  

    (53) 

 

From (52) it can be deduced that  

 

  

    (54) 

  
 

The regularity condition imposed on the curve  ensures the existence of the constant  so that 

. As such, the following inequalities can be obtained:  

 

 

       (55) 

  

Above we used the notations:  

 

         (56) 

      (57) 

 

Also, the tensor of conductivity  must satisfy the conditions:  

 

    (58) 

 

in which the constant  was introduced in (57) and the constant  is:  

 

          (59) 

 

Now we need to introduce the constants , , , and , through the following relations:  
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     (60) 

  

        (61) 

We need to suppose that  

 

         (62) 

  

         (63) 

 

in which the constants  and  are defined by:  

 

  (64) 

  

                                                                             (65) 

 

where the last maximum is computed for , in which  is the known 

Sobolev space. 

So, we get, for the frequency of vibration, an explicit critical value, which is:  

  
Now, we can obtain the main result of our study, namely, an estimation of the spatial behavior of the amplitude 

, which is deduced by combining the results from above relations (51), (55), (58) and (62):  

  

  

  

  

  

  

   (66) 

  

  

  

  

  
In this way, the proof of Theorem 5 is finished.  
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4. Conclusions 

It is worth noting that the inequality (66), of differential type, differs essentially from the other inequalities that 

are used to obtain the estimates of Saint-Venant type. In order to obtain our spatial decay, we used some auxiliary 

identities which are based only on the strong ellipticity hypotheses imposed to the thermoelastic tensors. As such, 

our estimates can be applied to many different materials. 
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