[1] M. Abu-Shady, M. K. A. Kaabar, A Generalized Definition of the Fractional Derivative with Applications, Mathematical Problems in Engineering, Vol. 2021, No. 1, pp. 9444803, 2021.
[2] A. Raza, T. Thumma, S. U. Khan, M. Boujelbene, A. Boudjemline, I. A. Chaudhry, I. Elbadawi, Thermal mechanism of carbon nanotubes with Newtonian heating and slip effects: A Prabhakar fractional model, Journal of the Indian Chemical Society, Vol. 99, No. 10, pp. 100731, 2022/10/01/, 2022.
[3] T. Anwar, P. Kumam, Asifa, P. Thounthong, S. Muhammad, F. Z. Duraihem, Generalized thermal investigation of unsteady MHD flow of Oldroyd-B fluid with slip effects and Newtonian heating; a Caputo-Fabrizio fractional model, Alexandria Engineering Journal, Vol. 61, No. 3, pp. 2188-2202, 2022/03/01/, 2022.
[4] E. Viera-Martin, J. F. Gómez-Aguilar, J. E. Solís-Pérez, J. A. Hernández-Pérez, R. F. Escobar-Jiménez, Artificial neural networks: a practical review of applications involving fractional calculus, The European Physical Journal Special Topics, Vol. 231, No. 10, pp. 2059-2095, 2022/08/01, 2022.
[5] N. A. Sheikh, D. L. C. Ching, I. Khan, D. Kumar, K. S. Nisar, A new model of fractional Casson fluid based on generalized Fick’s and Fourier’s laws together with heat and mass transfer, Alexandria Engineering Journal, Vol. 59, No. 5, pp. 2865-2876, 2020/10/01/, 2020.
[6] N. Sene, Analytical Solutions of a Class of Fluids Models with the Caputo Fractional Derivative, Fractal and Fractional, Vol. 6, No. 1, pp. 35, 2022.
[7] S. Nadeem, B. Ishtiaq, J. Alzabut, S. M. Eldin, Three parametric Prabhakar fractional derivative-based thermal analysis of Brinkman hybrid nanofluid flow over exponentially heated plate, Case Studies in Thermal Engineering, Vol. 47, pp. 103077, 2023/07/01/, 2023.
[8] A. Rauf, A. Muhammad, Multi-layer flows of immiscible fractional second grade fluids in a rectangular channel, SN Applied Sciences, Vol. 2, No. 10, pp. 1714, 2020/09/21, 2020.
[9] S. Nadeem, B. Ishtiaq, J. Alzabut, A. M. Hassan, Fractional Nadeem trigonometric non-Newtonian (NTNN) fluid model based on Caputo-Fabrizio fractional derivative with heated boundaries, Scientific Reports, Vol. 13, No. 1, pp. 21511, 2023/12/06, 2023.
[10] I. Barmak, D. Picchi, A. Gelfgat, N. Brauner, Flow of a shear-thinning fluid in a rectangular duct, Physical Review Fluids, Vol. 9, No. 2, pp. 023303, 02/13/, 2024.
[11] S. Nadeem, B. Ishtiaq, J. Alzabut, S. M. Eldin, Implementation of differential transform method on the squeezing flow of trigonometric non-Newtonian fluid between two heated plates, International Journal of Modern Physics B, Vol. 38, No. 24, pp. 2450326, 2024.
[12] M. Ghalib, A. Zafar, Z. Hammouch, M. Riaz, K. Shabbir, Analytical results on the unsteady rotational flow of fractional-order non-Newtonian fluids with shear stress on the boundary, Discrete and Continuous Dynamical Systems - Series S, Vol. 13, 11/21, 2018.
[13] H. Zahir, Mehnaz, J. Gul, M. Inc, R. T. Alqahtani, Impact of fractional magnetohydrodynamic and hall current on ree-eyring fluid flow by using radial basis function method, Alexandria Engineering Journal, Vol. 88, pp. 210-215, 2024/02/01/, 2024.
[14] M. Arif, P. Kumam, W. Watthayu, Analysis of constant proportional Caputo operator on the unsteady Oldroyd-B fluid flow with Newtonian heating and non-uniform temperature, ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, Vol. 104, No. 2, pp. e202300048, 2024.
[15] A. Al Agha, Z. A. M., R. Muhammad, S. Ahmad, A. Shajar, N. Mudassar, H. and Al Garalleh, Analysis of active and passive control of fluid with fractional derivative, Numerical Heat Transfer, Part A: Applications, pp. 1-19.
[16] S. Sarwar, M. Aleem, M. A. Imran, A. Akgül, A comparative study on non-Newtonian fractional-order Brinkman type fluid with two different kernels, Numerical Methods for Partial Differential Equations, Vol. 40, No. 1, pp. e22688, 2024.