
Journal of Computational Applied Mechanics 2025, 56(2): 457-469 

DOI: 10.22059/jcamech.2025.390562.1370 

 

          RESEARCH PAPER   

 

Exact solutions for Two-dimensional flow of Fractional NTNN 

fluid within an oscillatory rectangular enclosure 

 

Sohail Nadeem a, b, c, *, Sobia Naz a, Bushra Ishtiaq a, Jehad Alzabut b, d 

a Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000, Pakistan 
b Department of Mathematics and Sciences, Prince Sultan University, 11586, Riyadh, Saudi Arabia 

c Department of Mathematics, Wenzhou University, Wenzhou, 325035, China 
d Department of Industrial Engineering, OSTIM Technical University, Ankara 06374, Türkiye 

Abstract 

In this paper, we present an analysis for the unsteady two-dimensional flow 

of incompressible fractional NTNN model. The purpose of this research is to 

detect exact solutions for the cosine oscillation inside an oscillating 

rectangular duct having fractional fluid. The mixed initial-boundary value 

problem is simplified by using Laplace and double finite Fourier sine 

transform. The impacts of pertinent parameters on the velocity profile and 

the corresponding shear stresses are analysed through graphical 

illustrations for cosine oscillation. Our results indicate that the fluid's flow 

rises in correlation with fractional and rheological factors, such as  

and . As limiting cases of exact solution, the results can also be obtained for 

the ordinary NTNN and Newtonian fluid.  
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1. Introduction 

Fractional calculus, the study of derivatives and integrals with non-integer orders, boasts a historical lineage 

nearly as rich as that of classical calculus with integer orders. This concept emerged nearly concurrently with 

classical calculus, tracing back to a notable exchange between G. W. Leibniz and L’Hospital (1695), where they 

pondered a significance of half derivatives. The FC theory more like an extension of the ordinary derivatives and 

due to its far-ranging applications in many fields of science and engineering it has gained the much need attention 

[1]. In the 19th century and onward, fractional calculus has gained significant momentum and present itself as a 

cornerstone for applied field such as factional geometry, fractional dynamics, and fractional differential equations. 

The practicality of fractional calculus is endless with endless applications in modern mathematics such as 

mechatronics, signal and image processing, environmental science. It even has application in the medical field. It 

can be applicable in tuberculosis and Ebola treatment [2, 3]. Aguilar et al. [4] did a study and analysis which was 

aimed at exploring the practicality of FC theory together with artificial neural networks (ANNs). Their research was 

aimed towards a comprehensive oversight over the key characteristics and application of ANNs backed by enhanced 

fractional calculus theory. On the other hand, Sheikh et al. [5] worked on the transfer of heat and mass within 

unstable Magnetohydrodynamic (MHD) fluids flow in Casson fluid within a vertical channel. They put to concept of 

Caputo time fractional derivative along with Fick’s and Fourier’s law to work in order to conduct their investigation. 

Sene [6] shed light on the discussion that by utilizing Caputo derivative along with finding their exact solution using 

 

* Corresponding author: Email Address: sohail@qau.edu.pk 



458 Sohail Nadeem et al. 

Laplace transform and Fourier sine transform. Nadeem et al [7] discussed the analysis of fractional derivative 

applied to a hybrid nanofluid of brinkman type which was aimed at exploring the implications of inclined magnetic 

field. Rauf et al. [8] delve into the study of unsteady multilayer laminar flow of incompatible factional second grade 

fluid that are confined in between a rectangular channel made by two parallel plates.  

 Non-Newtonian fluids have a lot of applications in engineering and industries. Among some of those 

applications are gels, lubricants, sprays and much more. The hardest thing in this fluid mechanics is predicting the 

behavior of non- Newtonian fluids. There are many research that are being done to understand the behavior of non-

Newtonian fluids. The fractional NTNN is a non-Newtonian which was discussed by Nadeem et al [9]. The analysis 

of authors focused on applying the Caputo fractional derivative to examine the unsteady flow of a non-Newtonian 

fluid depicted by a trigonometric type. Barmak et al. [10] evaluated analytical solution of the steady laminar flow of 

a non-Newtonian fluid in a rectangular duct. Nadeem et al. [11] were identifying the analytical solution of squeezing 

flow of trigonometric non-Newtonian fluid between two infinite parallel heated plates with the help of differential 

transform method. Analytical solution of the unsteady rotational flow through an infinite circular cylinder of a non-

Newtonian fluids with fractional-order derivative was obtained by Ghalib et al. [12]. The most recent research on 

fractional-order non-Newtonian fluids is described in [13-16]. 

The purpose of this paper is to study the two-dimensional unsteady flow of fractional NTNN fluid through an 

oscillating rectangular duct. The focus of this research is on the cosine oscillation of a rectangular cross-section 

duct. The exact solution for the field of velocity and shear stress is obtained by using the double finite Fourier sine 

transform and the discrete Laplace transform. Notably, regular NTNN and Newtonian fluid are studied as special 

cases. This analysis is prominent for its originality because no one has explored it before. Lastly, the impacts of 

some rheological factors and fractional order factors on the flow of fluid are represented graphically. 

 

2.  Nadeem trigonometric non-Newtonian model (NTNN) 

The equation for an incompressible fractional NTNN model is given as 

 
Here is Cauchy stress, is the indeterminate spherical stress, and  is extra stress tensor which is define as  

 

(1) 

where  

After the first order expansion of   Eq. (1.5) becomes 

 

(2) 

We can also be used  and 

 instead of using  in Eq. (1). By utilizing these trigonometric functions, the stress 

tensor is expressed like this below 

 

 

 

 

 

 

(3) 

 



Journal of Computational Applied Mechanics 2025, 56(2): 457-469 459 

 
The first-order expansion to the previously mentioned trigonometric type functions is applied and here is what 

we have obtained. 

 

 

 

 

 

 

(4) 

The extra stress tensor expressions given in Eq.  are resulting in single equation after using Eq.  in Eq. 

. 

 

(5) 

Where  Here  represents the velocity gradient and  denotes the transpose of the velocity 

gradient. 

 

3. Problem formulation  

Consider an incompressible fractional NTNN fluid within a rectangular duct, bounded by  to  

and  to  as depicted in Fig.1. Initially, the duct is stationary, but on time , it begins to 

oscillate on the . The field of velocity is illustrated as . 

 
Fig. 1: Geometry of the problem.  

The unsteady governing equations incorporating fractional derivatives in two dimensions along with the 

appropriate initial and boundary conditions, which are expressed as 

 

(6) 
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 (6a) 

 (6b) 

Where  and  are the material constants of Eyring-Powell fluid.  is the fractional calculus parameter such 

that . 

 Introducing the non-dimensional variables as follow 

 

(7) 

By substituting these non-dimensional variables in Eq.  to Eq.  and sitting aside the “ ” symbols, we 

came back to the non-dimensional model with its respective equations and conditions   

 

(8) 

 
(8a) 

 

 (8b) 

 

4. Exact Solution  

We will tackle the fractional differential equation described in Eq. (8) along with its initial and boundary 

conditions Eq. (8a) and Eq. (8b) by using a combination of techniques, namely the discrete Laplace transform, and 

double finite Fourier sine transform. To do this, we will multiply Eq. (8) by  and , then 

integrate over the intervals regarding  and , while also considering Eq. (8b), we find that  

 

(9) 

 

where  and 

 

(10) 

 

The double Fourier sine transform of satisfy the initial conditions 

 

(11) 

By discrete Laplace transforms, Eq. (9) with initial conditions Eq. (11) can be expressed as 

 

 

  

which can be simplified as  

 

(12) 

Where  

 
(13) 

and 

is the Laplace transform of . 

We consider the function 
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we can also write it as 

 

(14) 

Now Eq. (10) become as  

 
(15) 

 

By applying the double inverse Fourier sine transform to Eq. (15), we get the following 

 

(16) 

After simplification, we obtain the expression 

 

(17) 

 

With the help of inverse Laplace transform to Eq. (17) we get this expression 

 

(18) 

 

Now, sitting d=2a, d=2b, and using the convolution operator ( ), Eq. (18) become as 

 

(19) 

 

Using the widely recognized mathematical software "Mathematica", we can write 

 

 

(20) 

The exact solution of fractionalized NTNN fluid in a rectangular duct is presented in Eq. (20). There are some 

special cases of Eq. (20), which are given as   

Special case I: 

 If  ,we can get similar analytical solution of velocity field for ordinary NTNN model. Consequently, the 
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field of velocity reduces to  

 

(21) 

 

Special case II: 

If , we can get analogous exact solution of velocity field for Newtonian fluid. Consequently, the field of 

velocity reduces to  

 

 

(22) 

 

5. Calculation of Shear Stresses 

Shear stress tensors for this problem are 

 
(23) 

 

(24) 

Now, we denote  by   (tensions for cosine oscillation of duct). 

If we bring in   

 (25) 

we obtain  

 
(26) 

 

(27) 

And initial conditions are 

. (28) 

Apply the Laplace transforms on Eq. (26) and Eq. (27) alongside initial conditions Eq. (28), we get the following 

 
(29) 

 

(30) 
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Now use Eq. (17) into Eq. (29) and Eq. (30) with d=2a and h=2b, we have  

 

(31) 

 

(32) 

 

Applying inverse Laplace transform to Eq. (31) and Eq. (32), and employing widely recognized mathematical 

software "Mathematica", we obtain the following expression 

 

(33) 

 

(34) 

 

6. Findings and discussion 

In this article, we have investigated the flow properties of fractional NTNN fluid within a rectangular duct 

subject to oscillation. By employing the double finite Fourier sine transform and discrete Laplace transform, we 

obtained solution for cosine oscillations that converge to those of both conventional NTNN and Newtonian fluids 

under specific circumstances. To sum up, we have visually represented the impact of different variables on velocity 

field characteristics through graphical displays. By adjusting non-dimensional parameters like the non-integer 

fractional parameter , fluid parameter , and angular velocity , we have demonstrated their effects on the 

velocity field, offering a thorough comprehension of fluid flow behavior. In Figure 2, it’s evident that the fluid 

velocity field expands as the accelerating non-integer fractional parameter  values increase. In Figure 3, we 

observe that the velocity field accelerates as the fluid parameter N increases. Figure 4 depicts how the profile of 

velocity for cosine oscillation is affected by oscillation frequency, denoted as . As the values of  rise, the 

velocity experiences a corresponding increase. This occurs because a higher angular frequency implies that an object 

undergoes more oscillations or rotations per unit time, leading to a greater linear velocity. Figure 5 depicts the 

fluctuations in the velocity profile across various time values. The graphic reveals a direct proportionality between 

the impact of time and the transient velocity concerning the spatial coordinate . Figures. 6-9 examine the shear 

stresses corresponding to the non-integer fractional parameter  and fluid parameter . The shear stresses have the 

same behavior for these parameters as velocity field. Figure 10 is set up to analyze how the velocity field behaves 

for Eq. (18) and Eq. (19) as the fractional parameter α varies. It's observed that the velocity magnitude of 

conventional NTNN is higher than that of Fractional NTNN. In Figure 11, when we compare Eq. (18) and Eq. (20), 

we see that the fractional NTNN fluid has a higher velocity than the Newtonian fluid. 
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Fig. 2: Velocity profile corresponding to  with  

 

 

 
Fig. 3: Velocity field corresponding to N with  
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Fig. 4: Velocity field corresponding to  with  

 

 
Fig. 5: Velocity field corresponding to  with  

 

 



466 Sohail Nadeem et al. 

 
Fig. 6: Shear stresses corresponding to  with  

 

 
Fig. 7: Shear stresses corresponding to  with  
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Fig. 8:  Shear stresses corresponding to  with  

 

 
Fig. 9:  Shear stresses corresponding to  with  

 
 

7. Concluding remarks 

The exact solution is obtained in this chapter by using double finite Fourier sine transform and discrete Laplace 

transforms for field of velocity and associated with it shear stresses corresponding to the unsteady flow of Fractional 

NTNN fluids through an oscillating duct of rectangular cross-section. The finding shows that the solutions of 

ordinary NTNN fluid and Newtonian fluid, performing similar flow behavior, appear as the limiting cases of the 

obtained solution. This study discovers the consequences of various rheological parameters including  and 

 on the motion of the fractional NTNN fluid. The key findings and recommendations arising from this investigation 

include 
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• Fluid flow velocity exhibits an increasing trend with rising values of parameters  and . 

• Fluid flow velocity rises with increasing values of  and . 

• The behavior of fluid flow shear stress closely parallels that of fluid flow velocity concerning parameters α and 

N. 

 

 
Fig. 10: Velocity profile corresponding to  with  

 

 
Fig. 11:  Velocity profile corresponding to  with  
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