[1] M. M. Hamza, A. Sheriff, B. Y. Isah, A. Bello, Nonlinear thermal radiation effects on bioconvection nano fluid flow over a convectively heated plate, International Journal of Non-Linear Mechanics, Vol. 171, pp. 105010, 2025/04/01/, 2025.
[2] M. Ghayoor, W. S. Abbasi, A. H. Majeed, H. Alotaibi, A. R. Ali, Interference effects on wakes of a cluster of pentad square cylinders in a crossflow: A lattice Boltzmann study, AIP Advances, Vol. 14, No. 12, 2024.
[3] U. Farooq, H. Khan, F. Tchier, E. Hincal, D. Baleanu, H. Bin Jebreen, New approximate analytical technique for the solution of time fractional fluid flow models, Advances in Difference Equations, Vol. 2021, No. 1, pp. 81, 2021/01/28, 2021.
[4] A. S. Il’inskii, T. N. Galishnikova, Integral equation method in problems of electromagnetic-wave reflection from inhomogeneous interfaces between media, Journal of Communications Technology and Electronics, Vol. 61, No. 9, pp. 981-994, 2016/09/01, 2016.
[5] A. L. Buzov, D. S. Klyuev, D. A. Kopylov, A. M. Nescheret, Mathematical Model of a Two-Element Microstrip Radiating Structure with a Chiral Metamaterial Substrate, Journal of Communications Technology and Electronics, Vol. 65, No. 4, pp. 414-420, 2020/04/01, 2020.
[6] M. J. Lighthill, S. Goldstein, Contributions to the theory of heat transfer through a laminar boundary layer, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, Vol. 202, No. 1070, pp. 359-377, 1950.
[7] M. N. Sadiq, H. Shahzad, H. Alqahtani, V. Tirth, A. Algahtani, K. Irshad, T. Al-Mughanam, Prediction of Cattaneo–Christov heat flux with thermal slip effects over a lubricated surface using artificial neural network, Eur. Phys. J. Plus, Vol. 139, No. 9, pp. 851, 2024.
[8] Z. Djelloul, M. Hamdi Cherif, W. Adel, Solving the Lane-Emden and Emden-Fowler equations on Cantor Sets by the Local Fractional Homotopy Analysis Method, Progress in Fractional Differentiation and Applications, Vol. 10, pp. 241-250, 04/01, 2024.
[9] M. Mohammad, A. Trounev, Implicit Riesz wavelets based-method for solving singular fractional integro-differential equations with applications to hematopoietic stem cell modeling, Chaos, Solitons & Fractals, Vol. 138, pp. 109991, 2020/09/01/, 2020.
[10] R. Raza, R. Naz, S. Murtaza, S. I. Abdelsalam, Novel nanostructural features of heat and mass transfer of radiative Carreau nanoliquid above an extendable rotating disk, International Journal of Modern Physics B, Vol. 38, No. 30, pp. 2450407, 2024.
[11] S. Rahmani, J. Baiges, J. Principe, Anisotropic variational mesh adaptation for embedded finite element methods, Computer Methods in Applied Mechanics and Engineering, Vol. 433, pp. 117504, 2025/01/01/, 2025.
[12] K. Li, L. Xiao, M. Liu, Y. Kou, A distributed dynamic load identification approach for thin plates based on inverse Finite Element Method and radial basis function fitting via strain response, Engineering Structures, Vol. 322, pp. 119072, 2025/01/01/, 2025.
[13] H. Samy, W. Adel, I. Hanafy, M. Ramadan, A Petrov–Galerkin approach for the numerical analysis of soliton and multi-soliton solutions of the Kudryashov–Sinelshchikov equation, Iranian Journal of Numerical Analysis and Optimization, Vol. 14, No. Issue 4, pp. 1309-1335, 2024.
[14] I. Khan, T. Chinyoka, E. A. A. Ismail, F. A. Awwad, Z. Ahmad, MHD flow of third-grade fluid through a vertical micro-channel filled with porous media using semi implicit finite difference method, Alexandria Engineering Journal, Vol. 86, pp. 513-524, 2024/01/01/, 2024.
[15] Y. A. Fageehi, A. M. Alshoaibi, Investigating the Influence of Holes as Crack Arrestors in Simulating Crack Growth Behavior Using Finite Element Method, Applied Sciences, Vol. 14, No. 2, pp. 897, 2024.
[16] J. Zavodnik, M. Brojan, Spherical harmonics-based pseudo-spectral method for quantitative analysis of symmetry breaking in wrinkling of shells with soft cores, Computer Methods in Applied Mechanics and Engineering, Vol. 433, pp. 117529, 2025/01/01/, 2025.
[17] S. A. T. Algazaa, J. Saeidian, Spectral methods utilizing generalized Bernstein-like basis functions for time-fractional advection–diffusion equations, Mathematical Methods in the Applied Sciences, Vol. 48, No. 2, pp. 1411-1429, 2025.
[18] S. Shahmorad, M. H. Ostadzad, D. Baleanu, A Tau–like numerical method for solving fractional delay integro–differential equations, Applied Numerical Mathematics, Vol. 151, pp. 322-336, 2020/05/01/, 2020.
[19] R. G. Ghalini, E. Hesameddini, H. L. Dastjerdi, An efficient spectral collocation method for solving Volterra delay integral equations of the third kind, Journal of Computational and Applied Mathematics, Vol. 454, pp. 116138, 2025/01/15/, 2025.
[20] Z. Mahmoudi, M. M. Khalsaraei, M. N. Sahlan, A. Shokri, Laguerre wavelets spectral method for solving a class of fractional order PDEs arising in viscoelastic column modeling, Chaos, Solitons & Fractals, Vol. 192, pp. 116010, 2025/03/01/, 2025.
[21] Y. Youssri, A. Atta, Adopted Chebyshev Collocation Algorithm for Modeling Human Corneal Shape via the Caputo Fractional Derivative, Vol. 6, pp. 1223-1238, 02/19, 2025.
[22] Y. H. Youssri, W. M. Abd-Elhameed, A. A. Elmasry, A. G. Atta, An Efficient Petrov–Galerkin Scheme for the Euler–Bernoulli Beam Equation via Second-Kind Chebyshev Polynomials, Fractal and Fractional, Vol. 9, No. 2, pp. 78, 2025.
[23] Y. H. Youssri, A. G. Atta, Chebyshev Petrov–Galerkin method for nonlinear time-fractional integro-differential equations with a mildly singular kernel, Journal of Applied Mathematics and Computing, 2025/01/23, 2025.
[24] Y. H. Youssri, A. G. Atta, M. O. Moustafa, Z. Y. Abu Waar, Explicit collocation algorithm for the nonlinear fractional Duffing equation via third-kind Chebyshev polynomials, Iranian Journal of Numerical Analysis and Optimization, Vol. 15, No. Issue 2, pp. 655-675, 2025.
[25] M. Taema, Y. Youssri, Third-Kind Chebyshev Spectral Collocation Method for Solving Models of Two Interacting Biological Species, Contemporary Mathematics, Vol. 5, pp. 6189-6207, 12/16, 2024.
[26] Y. H. Youssri, A. G. Atta, Radical Petrov–Galerkin Approach for the Time-Fractional KdV–Burgers’ Equation, Mathematical and Computational Applications, Vol. 29, No. 6, pp. 107, 2024.
[27] Y. H. Youssri, A. G. Atta, Z. Y. A. Waar, M. O. Moustafa, Petrov-Galerkin method for small deflections in fourth-order beam equations in civil engineering, Nonlinear Engineering, Vol. 13, No. 1, 2024.
[28] Y. Y. HM Ahmed, WM Abd-Elhameed, Recursive and Explicit Formulas for Expansion and Connection
Coefficients in Series of Classical Orthogonal Polynomial Products, Contemporary Mathematics, Vol. 5, No. 4, pp. 4836-4873, 2024.
[29] A. G. Atta, J. F. Soliman, E. W. Elsaeed, M. W. Elsaeed, Y. H. Youssri, Spectral Collocation Algorithm for the Fractional Bratu Equation via Hexic Shifted Chebyshev Polynomials, Computational Methods for Differential Equations, pp. -, 2024.
[30] M. Abdelhakem, Y. H. Youssri, Two spectral Legendre's derivative algorithms for Lane-Emden, Bratu equations, and singular perturbed problems, Applied Numerical Mathematics, Vol. 169, pp. 243-255, 2021/11/01/, 2021.
[31] A. M. Abbas, Y. H. Youssri, M. El-Kady, M. A. Abdelhakem, Cutting-Edge spectral solutions for differential and integral equations utilizing Legendre’s derivatives, Iranian Journal of Numerical Analysis and Optimization, pp. -, 2025.
[32] L. Carlitz, The product of two ultraspherical polynomials, Proceedings of the Glasgow Mathematical Association, Vol. 5, No. 2, pp. 76-79, 1961.
[33] I. Aziz, I. Siraj ul, F. Khan, A new method based on Haar wavelet for the numerical solution of two-dimensional nonlinear integral equations, Journal of Computational and Applied Mathematics, Vol. 272, pp. 70-80, 2014/12/15/, 2014.
[34] R. Hafez, Y. Youssri, Spectral Legendre-Chebyshev Treatment of 2D Linear and Nonlinear Mixed Volterra-Fredholm Integral Equation, Mathematical Sciences Letters, Vol. 9, pp. 37-47, 05/01, 2020.
[35] F. H. Shekarabi, K. Maleknejad, R. Ezzati, Application of two-dimensional Bernstein polynomials for solving mixed Volterra–Fredholm integral equations, Afrika Matematika, Vol. 26, No. 7, pp. 1237-1251, 2015/12/01, 2015.
[36] H. Almasieh, J. Nazari Meleh, Numerical solution of a class of mixed two-dimensional nonlinear Volterra–Fredholm integral equations using multiquadric radial basis functions, Journal of Computational and Applied Mathematics, Vol. 260, pp. 173-179, 2014/04/01/, 2014.
[37] M. Kazemi, Sinc approximation for numerical solutions of two-dimensional nonlinear Fredholm integral equations, Mathematical Communications, Vol. 29, No. 1, pp. 83-103, 2024.
[38] E. Babolian, S. Bazm, P. Lima, Numerical solution of nonlinear two-dimensional integral equations using rationalized Haar functions, Communications in Nonlinear Science and Numerical Simulation, Vol. 16, No. 3, pp. 1164-1175, 2011/03/01/, 2011.
[39] W. Abd-Elhameed, Y. Youssri, NUMERICAL SOLUTIONS FOR VOLTERRA-FREDHOLM-HAMMERSTEIN INTEGRAL EQUATIONS VIA SECOND KIND CHEBYSHEV QUADRATURE COLLOCATION ALGORITHM, Advances in Mathematical Sciences and Applications, Vol. 24, pp. 129-141, 01/01, 2014.