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Abstract 

This research introduces a numerical method for solving two-dimensional integral 

equations. The exact solution is assumed to be a limit point for the set of all polynomials 

and is approximated to be a finite series of constant multiples of basis functions for the 

polynomial functions space. Legendre’s first derivative polynomials have been chosen 

in this work as the orthogonal basis functions. Some new relations are constructed, 

such as the linearization formula. Subsequently, applying the pseudo-Galerkin 

spectral method results in a system of algebraic equations in the constant coefficients 

of the approximated expansion. Lastly, we solve the algebraic system using the Gauss 

elimination method for linear systems or Newton’s iteration method with zero initial 

guesses for nonlinear systems that are most likely to appear out of the presented 

procedure. This approach yields the desired semi-analytic approximate solution. 

Convergence and error analyses have been studied. To clarify the efficiency and 

accuracy of the presented method, we solved some numerical test problems. 

Keywords: Legendre polynomials; spectral methods; pseudo-Galerkin spectral method 

1. Introduction 

Integral and differential equations have many applications in various fields [1-10]. Most of the time, the exact 

solution cannot be obtained analytically, and numerical methods have been constructed to introduce numerical and 

semi-analytic approximations as suitable alternatives, such as finite element [11-13], finite difference [14, 15], and 

spectral methods [16-20]. Finite element and finite difference methods give us a pure numerical approximation solution. 

However, spectral methods give us a semi-analytic approximation solution. The main idea in all spectral methods is 

expanding the dependent variable as a linear combination of a set of functions that form a basis for the space of 

polynomials. They should be orthogonal according to an inner product under a weight function 𝑤(𝑥). 2-D integral 

equations are used in many scientific and engineering domains, including mathematical physics, fluid mechanics, 

potential theory, and image processing. These equations, which are composed of unknown functions provided over 2-

D domains, can be classified as either Volterra or Fredholm types according to the limitations of integration. Spectral 

methods convert the integral equation into an algebraic system of equations that may be solved rapidly by extending 

the unknown function in terms of orthogonal polynomial bases. This method has been effectively applied to issues 

like heat conduction in composite materials and electrostatic interactions that call for high precision and quick 

convergence. For 2-D functions we have: The function 𝑢(𝑥, 𝑦) can be represented as an infinite series expansion: 
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𝑢(𝑥, 𝑦) = lim
𝑁→∞
𝑀→∞

∑𝑁𝑖=0 ∑
𝑀
𝑗=0 𝑐𝑖,𝑗𝜙𝑖(𝑥)𝜙𝑗(𝑦).     (1) 

 

This expansion allows us to reformulate the integral or differential equation in the following form: 

 

lim
𝑁→∞
𝑀→∞

𝑅𝑁,𝑀(𝑥, 𝑦) = 0,      (2) 

 

where 𝑅𝑁,𝑀(𝑥, 𝑦) represents the residual function. 

 

Because of their high accuracy and exponential convergence for smooth problems, spectral methods are frequently 

used to solve differential and integral equations. These approaches use a finite set of orthogonal basis functions, 

selected according to the issue domain, to approximate the answer. Among the different types of spectral methods, 

the Galerkin, Petrov-Galerkin, and collocation approaches are commonly used. Many recent works have demonstrated 

the efficiency of spectral methods in various applications. To discuss some of the recent advances in spectral methods, 

we mention here, that Youssri and Atta developed a Chebyshev collocation algorithm to model human corneal shape 

via the Caputo fractional derivative [21]. Youssri et al. proposed efficient Petrov-Galerkin schemes using Chebyshev 

polynomials for the Euler-Bernoulli beam equation [22] and nonlinear time-fractional integro-differential equations 

[23]. Youssri et al. developed explicit collocation and spectral collocation methods using third-kind Chebyshev 

polynomials for fractional Duffing equations [24] and biological interactions [25]. They also proposed a radical Petrov-

Galerkin approach for the time-fractional KdV-Burgers’ equation [26] and analyzed small deflections in fourth-order 

beam equations [27]. Ahmed et al. derived formulas for expansion and connection coefficients in classical orthogonal 

polynomials [28], and Atta et al. developed a spectral collocation algorithm for the fractional Bratu equation using 

hexic shifted Chebyshev polynomials [29]. 

 

Spectral methods involve three types: the Galerkin, Tau, and collocation methods. A modification of a spectral 

method is called the pseudo-Galerkin spectral method is used through this work, in which a system of algebraic 

equations is constructed by setting 𝑅𝑁,𝑀(𝑥𝑖 , 𝑦𝑗) = 0,  for some suitable set of points. Legendre’s first derivative 

polynomials are chosen to be the basis functions. New relations have been constructed such as the linearization 

formula. Finally, the presented method is applied to some applications. 

 

2. Preliminaries 

Through this work, some needed relations of the introduced basis functions, Legendre’s first derivative 

polynomials, are presented, such as the moment relation and the integration formula. They are essential to produce 

the introduced algorithm. 

 

The following definition describes the basis functions used through this work [30]. 

 

Definition 1. Legendre’s derivative polynomials of degree 𝑞, denoted by 𝐷𝐿𝑞(𝑥), are defined to be the derivative 

of the Legendre polynomial that is one degree higher: 

 

𝐷𝐿𝑞(𝑥) =
𝑑

𝑑𝑥
ℒ𝑞+1(𝑥),     (3) 

 

where 𝑞 is a non-negative integer. 

 

These polynomials can be expressed in an explicit forms as follow: 

 

𝐷𝐿𝑞(𝑥) = ∑
⌊
𝑞

2
⌋

𝑗=0
(−1)𝑗

(2𝑞−2𝑗+2)!

2𝑞+1(𝑗)!(𝑞−𝑗+1)!(𝑞−2𝑗)!
𝑥𝑞−2𝑗.    (4) 

 

Now, some important formulas of these polynomials are presented [31]. 

 

The next formula is the moment formula for the introduced basis polynomials. 
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𝑥𝑚𝐷𝐿𝑞(𝑥) = ∑
min(𝑚,⌊

𝑞+𝑚

2
⌋)

𝑘=0 𝐹𝑚,𝑘+1,𝑞 𝐷𝐿𝑞+𝑚−2𝑘(𝑥),    (5) 

 

where: 

 

𝐹𝑚,𝑘,𝑞 =

{
 
 

 
 
𝑞+𝑘

2𝑞+3
, 𝑚 = 1,

𝐹1,1,𝑞 𝐹𝑚−1,1,𝑞+1, 𝑚 > 1, 𝑘 = 1,

𝐹1,1,0 𝐹𝑚−1,𝑘,1, 𝑚 > 1, 1 < 𝑘 < 𝑚 + 1, 𝑞 = 0,

𝐹1,1,𝑞 𝐹𝑚−1,𝑘,𝑞+1 + 𝐹1,2,𝑞 𝐹𝑚−1,𝑘−1,𝑞−1, 𝑚 > 1, 1 < 𝑘 < 𝑚 + 1, 𝑞 > 0,

𝐹1,2,𝑞 𝐹𝑚−1,𝑚,𝑞−1, 𝑚 > 1, 𝑘 = 𝑚 + 1.

  (6) 

 

Integrals of Legendre’s derivatives can be presented as a linear combination of Legendre’s derivatives themselves 

according to: 

 

∫
𝑥

−1
𝐷𝐿𝑞(𝑡)dt = ∑2𝑘=0 [

(−1)𝑘(1−𝛿𝑘,2)(1−𝛿𝑞,0 𝛿𝑘,1)

2𝑞+3
+ (−1)𝑞𝛿𝑘,2] 𝐷𝐿(𝑞+1−2𝑘)(1−𝛿𝑘,2)(1−𝛿𝑞,0 𝛿𝑘,1)(𝑥).          (7) 

 

The next formula presents the integral of the 𝑚𝑡ℎ moment on the interval [−1,1]. 
 

For every 𝑚, 𝑞 ∈ ℕ we have: 

 

∫
1

−1
𝑡𝑚𝐷𝐿𝑞(𝑡)dt = {

1 + (−1)𝑞+𝑚, 𝑞 ≥ 𝑚,

∑
min(𝑚,⌊

𝑞+𝑚

2
⌋)

𝑘=0 𝐹𝑚,𝑘+1,𝑞(1 + (−1)
𝑞+𝑚−2𝑘), 0 ≤ 𝑞 < 𝑚.

   (8) 

 

The following section introduces and proves some essential formulas that treat the nonlinear terms in an integral 

equation. These formulas are required to simplify the calculations of several complicated integrations, enhancing the 

presented method’s efficiency. 

 

3. Linearization Formulas of the Legendre Derivative Polynomials 

This section starts with the linearization formula. Hence, other important relations concerning essential 

integrations will be developed. 

 

Lemma 1. The product of two Legendre’s derivative polynomials of degrees 𝑟 and 𝑞 can be expressed as a linear 

combination of the Legendre’s derivative polynomials themselves as follow: 

 

𝐷𝐿𝑟(𝑥)𝐷𝐿𝑞(𝑥) = ∑min
(𝑟,𝑞)

𝑖=0 𝜎𝑟,𝑞,𝑖 𝐷𝐿𝑟+𝑞−2𝑖(𝑥),    (9) 

 

where: 

 

𝜎𝑟,𝑞,𝑖 =
4(𝑟+𝑞+

3

2
−2𝑖)(𝑟+𝑞−2𝑖)! Γ(

3

2
+𝑖)𝐵(𝑟+

3

2
−𝑖,𝑞+

3

2
−𝑖)(𝑟+𝑞+

3

2
−𝑖)3

2

𝜋(𝑟+𝑞+
3

2
−𝑖) 𝑖!(𝑟−𝑖)!(𝑞−𝑖)!

,    (10) 

 

such that (𝑎)𝑛 =
Γ(𝑎+𝑛)

Γ(𝑎)
. 

 

Proof. As known, Ultraspherical polynomials, 𝐶𝑞
(𝜈)
(𝑥), are related to Legendre polynomials as follows [32]: 

 

𝐶𝑞
(
1

2
)
(𝑥) = ℒ𝑞(𝑥).       (11) 

 

𝑑𝐶𝑞
(𝜈)(𝑥)

𝑑𝑥
= 2𝜈 𝐶𝑞−1

(𝜈+1)(𝑥).      (12) 
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From Eqs. (11) and (12), the introduced basis functions are related to the ultraspherical polynomials as follow: 

 

𝐶𝑞
(
3

2
)
(𝑥) = 𝐷𝐿𝑞(𝑥).      (13) 

 

The next relation shows the expansion of the product of two ultraspherical polynomials: 

 

𝐶𝑟
(𝜈)(𝑥)𝐶𝑞

(𝜈)(𝑥) = ∑
min(𝑟,𝑞)
𝑖=0

(𝑟+𝑞+𝜈−2𝑖)(𝜈)𝑖(𝜈)𝑟−𝑖(𝜈)𝑞−𝑖(2𝜈)𝑟+𝑞−𝑖(𝑟+𝑞−2𝑖)!

(𝑟+𝑞+𝜈−𝑖) 𝑖!(𝑟−𝑖)!(𝑞−𝑖)!(𝜈)𝑟+𝑞−𝑖(2𝜈)𝑟+𝑞−2𝑖
𝐶𝑟+𝑞−2𝑖
(𝜈) (𝑥).   (14) 

 

Setting 𝜈 =
3

2
 in relation (14) to get: 

 

𝐷𝐿𝑟(𝑥) 𝐷𝐿𝑞(𝑥) = ∑
min(𝑟,𝑞)
𝑖=0

(𝑟+𝑞+
3

2
−2𝑖)(

3

2
)
𝑖
(
3

2
)
𝑟−𝑖

(
3

2
)
𝑞−𝑖

(3)𝑟+𝑞−𝑖(𝑟+𝑞−2𝑖)!

(𝑟+𝑞+
3

2
−𝑖) 𝑖!(𝑟−𝑖)!(𝑞−𝑖)!(

3

2
)
𝑟+𝑞−𝑖

(3)𝑟+𝑞−2𝑖
𝐷𝐿𝑟+𝑞−2𝑖(𝑥).  (15) 

 

Simplifying the pochhammer factors to get: 

 

𝐷𝐿𝑟(𝑥)𝐷𝐿𝑞(𝑥) = ∑min
(𝑟,𝑞)

𝑖=0

(𝑟+𝑞+
3

2
−2𝑖)(𝑟+𝑞−2𝑖)! Γ(

3

2
+𝑖)Γ(𝑟+

3

2
−𝑖)Γ(𝑞+

3

2
−𝑖)Γ(𝑟+𝑞+3−𝑖)

(𝑟+𝑞+
3

2
−𝑖) 𝑖!(𝑟−𝑖)!(𝑞−𝑖)! (Γ(

3

2
))
2
 Γ(𝑟+𝑞+

3

2
−𝑖)Γ(𝑟+𝑞+3−2𝑖)

𝐷𝐿𝑟+𝑞−2𝑖(𝑥).  (16) 

 

Using the relation between the beta and gamma functions, 𝐵(𝑎, 𝑏) =
Γ(𝑎)Γ(𝑏)

Γ(𝑎+𝑏)
, to get: 

 

𝐷𝐿𝑟(𝑥)𝐷𝐿𝑞(𝑥) = ∑min
(𝑟,𝑞)

𝑖=0

4(𝑟+𝑞+
3

2
−2𝑖)(𝑟+𝑞−2𝑖)! Γ(

3

2
+𝑖)𝐵(𝑟+

3

2
−𝑖,𝑞+

3

2
−𝑖)(𝑟+𝑞+

3

2
−𝑖)3

2

𝜋(𝑟+𝑞+
3

2
−𝑖) 𝑖!(𝑟−𝑖)!(𝑞−𝑖)!

𝐷𝐿𝑟+𝑞−2𝑖(𝑥).    (17) 

 

This completes the proof. 

 

To deal with the integral of the form ∫
1

−1
𝑡𝑚𝐷𝐿𝑟(𝑡)𝐷𝐿𝑞(𝑡)𝑑𝑡, Lemma (1) is used as the first step, then relation (8) 

is applied. The next Theorem calculates such integrals directly. 

 

Theorem 1.  The following integral can be calculated as: 

 

∫
1

−1
𝑡𝑚𝐷𝐿𝑟(𝑡)𝐷𝐿𝑞(𝑡)𝑑𝑡                                                                                                                                                          

=

{
  
 

  
 
0, 𝑟 + 𝑞 + 𝑚 is odd,

∑min
(𝑟,𝑞)

𝑖=0 2𝜎𝑟,𝑞,𝑖  , 𝑟 + 𝑞 + 𝑚 is even, 0 ≤ 𝑚 ≤ |𝑟 − 𝑞|,

∑
𝑟+𝑞−𝑚

2
𝑖=0

2𝜎𝑟,𝑞,𝑖 + ∑
min(𝑟,𝑞)

𝑖=
𝑟+𝑞−𝑚+2

2

∑
𝑟+𝑞+𝑚−2𝑖

2
𝑘=0

2𝜎𝑟,𝑞,𝑖  𝐹𝑚,𝑘+1,𝑟+𝑞−2𝑖 , 𝑟 + 𝑞 + 𝑚 is even, |𝑟 − 𝑞| < 𝑚 ≤ 𝑟 + 𝑞,

∑min
(𝑟,𝑞)

𝑖=0 ∑
𝑟+𝑞+𝑚−2𝑖

2
𝑘=0 2𝜎𝑟,𝑞,𝑖 𝐹𝑚,𝑘+1,𝑟+𝑞−2𝑖  , 𝑟 + 𝑞 + 𝑚 is even,𝑚 > 𝑟 + 𝑞,

     (18) 

 

where 𝐹𝑚,𝑘,𝑞 is defined in Eq. (6), and 𝜎𝑟,𝑞,𝑖 is defined in Eq. (10). 

 

Proof. In the beginning, Eq. (8) needs to be rewritten as follow: 

∫
1

−1
𝑡𝑚𝐷𝐿𝑞(𝑡)dt = {

0, 𝑞 + 𝑚 is odd,
2, 𝑞 + 𝑚 is even, 𝑞 ≥ 𝑚,

∑
𝑞+𝑚

2
𝑘=0 2 𝐹𝑚,𝑘+1,𝑞 , 𝑞 + 𝑚 is even, 0 ≤ 𝑞 < 𝑚.

   (19) 

 

Applying Lemma (1) to the integrand of the left-hand side of Eq. (18) to get: 

 

∫
1

−1
𝑡𝑚𝐷𝐿𝑟(𝑡)𝐷𝐿𝑞(𝑡)𝑑𝑡 = ∑min

(𝑟,𝑞)
𝑖=0 𝜎𝑟,𝑞,𝑖 ∫

1

−1
𝑡𝑚𝐷𝐿𝑟+𝑞−2𝑖(𝑡)𝑑𝑡.   (20) 
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From Eq. (20), it is clear that: 

 

0 ≤ 𝑖 ≤ min(𝑟, 𝑞),      (21) 

 

multiplying by −2, adding 𝑟 + 𝑞, and since 𝑟 + 𝑞 = max(𝑟, 𝑞) + min(𝑟, 𝑞), and |𝑟 − 𝑞| = max(𝑟, 𝑞) − min(𝑟, 𝑞) to 

get: 

 

𝑟 + 𝑞 ≥ 𝑟 + 𝑞 − 2𝑖 ≥ max(𝑟, 𝑞) − min(𝑟, 𝑞).    (22) 

 

Thus: 

 
|𝑟 − 𝑞| ≤ 𝑟 + 𝑞 − 2𝑖 ≤ 𝑟 + 𝑞.     (23) 

 

For the first case, 𝑟 + 𝑞 + 𝑚 − 2𝑖 is odd, Eq. (19) is applied to Eq. (20). Hence: 

 

∫
1

−1
𝑡𝑚𝐷𝐿𝑟(𝑡)𝐷𝐿𝑞(𝑡)𝑑𝑡 = 0.     (24) 

 

While the even case of 𝑟 + 𝑞 +𝑚 − 2𝑖 will be split into three sub-cases. 

 

For 0 ≤ 𝑚 ≤ |𝑟 − 𝑞|, from Eq. (23): 

 

𝑟 + 𝑞 − 2𝑖 ≥ 𝑚.      (25) 

 

Applying Eq. (19) to Eq. (20) to get: 

 

∫
1

−1
𝑡𝑚𝐷𝐿𝑟(𝑡)𝐷𝐿𝑞(𝑡)𝑑𝑡 = ∑min

(𝑟,𝑞)
𝑖=0 2𝜎𝑟,𝑞,𝑖 .    (26) 

 

For 𝑚 > 𝑟 + 𝑞, from Eq. (23): 

0 ≤ 𝑟 + 𝑞 − 2𝑖 < 𝑚.     (27) 

 

Eq. (20), after applying Eq. (19), becomes: 

 

∫
1

−1
𝑡𝑚𝐷𝐿𝑟(𝑡)𝐷𝐿𝑞(𝑡)𝑑𝑡 = ∑min

(𝑟,𝑞)
𝑖=0 ∑

𝑟+𝑞+𝑚−2𝑖

2
𝑘=0 2𝜎𝑟,𝑞,𝑖  𝐹𝑚,𝑘+1,𝑟+𝑞−2𝑖.   (28) 

 

For |𝑟 − 𝑞| < 𝑚 ≤ 𝑟 + 𝑞, multiplying the inequality by a negative sign, then adding 𝑟 + 𝑞 and dividing by 2 to 

get: 

 

0 ≤
𝑟+𝑞−𝑚

2
< min(𝑟, 𝑞).      (29) 

 

Setting 𝑟 + 𝑞 − 2𝑖 ≥ 𝑚 leads to: 

 

𝑖 >
𝑟+𝑞−𝑚

2
.      (30) 

 

Applying Eq. (19) to the integral in Eq. (20): 

 

∫
1

−1
𝑡𝑚𝐷𝐿𝑟+𝑞−2𝑖(𝑡)𝑑𝑡 = {

2, 0 ≤ 𝑖 ≤
𝑟+𝑞−𝑚

2
,

∑
𝑟+𝑞+𝑚−2𝑖

2
𝑘=0

2 𝐹𝑚,𝑘+1,𝑟+𝑞−2𝑖,
𝑟+𝑞−𝑚

2
< 𝑖 ≤ min(𝑟, 𝑞).

   (31) 

 

Therefore: 

 

∫
1

−1
𝑡𝑚𝐷𝐿𝑟(𝑡)𝐷𝐿𝑞(𝑡)𝑑𝑡 = ∑

𝑟+𝑞−𝑚

2
𝑖=0

2𝜎𝑟,𝑞,𝑖 + ∑
min(𝑟,𝑞)

𝑖=
𝑟+𝑞−𝑚+2

2

∑
𝑟+𝑞+𝑚−2𝑖

2
𝑘=0 2𝜎𝑟,𝑞,𝑖  𝐹𝑚,𝑘+1,𝑟+𝑞−2𝑖 .  (32) 
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This completes the proof. 

 

Lemma 2.  The following integral can be calculated as: 

 

∫
𝑥

−1
𝑡𝑚𝐷𝐿𝑞(𝑡)𝑑𝑡 = {

Υ𝑞(𝑥), 𝑚 = 0,

∑
min(𝑚,⌊

𝑞+𝑚

2
⌋)

𝑘=0
𝐹𝑚,𝑘+1,𝑞Υ𝑞+𝑚−2𝑘(𝑥), 𝑚 > 0.

   (33) 

 

where: 

 

Υ𝑞(𝑥) =
1

2𝑞+3
 𝐷𝐿𝑞+1(𝑥) +

𝛿𝑞,0−1

2𝑞+3
 𝐷𝐿(𝑞−1)(1−𝛿𝑞,0)(𝑥) + (−1)

𝑞 .    (34) 

 

Proof. For 𝑚 = 0: 

 

From Eq. (7): 

 

∫
𝑥

−1
𝐷𝐿𝑞(𝑡)dt = ∑2𝑗=0 𝛼𝑞,𝑗 𝐷𝐿𝜆𝑞,𝑗(𝑥) = 𝛼𝑞,0 𝐷𝐿𝜆𝑞,0(𝑥) + 𝛼𝑞,1 𝐷𝐿𝜆𝑞,1(𝑥) + 𝛼𝑞,2 𝐷𝐿𝜆𝑞,2(𝑥), (35) 

where: 

 

𝛼𝑞,𝑗 =
(−1)𝑗(1−𝛿𝑗,2)(1−𝛿𝑞,0 𝛿𝑗,1)

2𝑞+3
+ (−1)𝑞𝛿𝑗,2 ,     (36) 

 

and 

 

𝜆𝑞,𝑗 = (𝑞 + 1 − 2𝑗)(1 − 𝛿𝑗,2)(1 − 𝛿𝑞,0 𝛿𝑗,1).    (37) 

 

Therefore, Eq. (35) takes the following form: 

 

∫
𝑥

−1
𝐷𝐿𝑞(𝑡)dt = Υ𝑞(𝑥),      (38) 

 

which completes the proof for the 𝑚 = 0 case. 

 

For 𝑚 > 0: 

 

Integrating both sides of Eq. (5): 

 

∫
𝑥

−1
𝑡𝑚𝐷𝐿𝑞(𝑡)𝑑𝑡 = ∑

min(𝑚,⌊
𝑞+𝑚

2
⌋)

𝑘=0 𝐹𝑚,𝑘+1,𝑞 ∫
𝑥

−1
𝐷𝐿𝑞+𝑚−2𝑘(𝑡)𝑑𝑡.   (39) 

 

Using Eq. (38), to get: 

 

∫
𝑥

−1
𝑡𝑚𝐷𝐿𝑞(𝑡)𝑑𝑡 = ∑

min(𝑚,⌊
𝑞+𝑚

2
⌋)

𝑘=0
𝐹𝑚,𝑘+1,𝑞Υ𝑞+𝑚−2𝑘(𝑥),   (40) 

 

which completes the proof for 𝑚 > 0. 

 

The following Theorem can be considered as a generalization of Theorem (1). This generalization allows us to 

integrate over the interval [−1, 𝑥] instead of the interval [−1,1]. 
 

Theorem 2. The integral of the product of two Legendre’s derivative polynomials by a factor of 𝑡𝑚 over the 

interval [−1, 𝑥] is calculated as follows: 
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∫
𝑥

−1
𝑡𝑚𝐷𝐿𝑟(𝑡)𝐷𝐿𝑞(𝑡)𝑑𝑡 = {

∑min
(𝑟,𝑞)

𝑖=0 𝜎𝑟,𝑞,𝑖Υ𝑟+𝑞+𝑚−2𝑖(𝑥), 𝑚 = 0,

∑min
(𝑟,𝑞)

𝑖=0 ∑
min(𝑚,⌊

𝑟+𝑞+𝑚−2𝑖

2
⌋)

𝑘=0
𝜎𝑟,𝑞,𝑖  𝐹𝑚,𝑘+1,𝑟+𝑞−2𝑖  Υ𝑟+𝑞+𝑚−2𝑖−2𝑘(𝑥), 𝑚 > 0,

 (41) 

 

where 𝐹𝑚,𝑘,𝑞 is defined in Eq. (6), 𝜎𝑟,𝑞,𝑖 is defined in Eq. (10), and Υ𝑞(𝑥) is defined in Eq. (34). 

 

Proof. From Lemma (1) we have the following: 

 

∫
𝑥

−1
𝑡𝑚𝐷𝐿𝑟(𝑡)𝐷𝐿𝑞(𝑡)𝑑𝑡 = ∑min

(𝑟,𝑞)
𝑖=0 𝜎𝑟,𝑞,𝑖 ∫

𝑥

−1
𝑡𝑚𝐷𝐿𝑟+𝑞−2𝑖(𝑡)𝑑𝑡.   (42) 

 

According to Eq. (42), the integration (41) can be calculated using Lemma (2) which completes the proof. 

 

4. Pseudo-Galerkin Approach for Solving Integral Equations 

This section presents a method by which some types of integral equations can be solved. The presented method is 

based on the Legendre’s first derivative polynomials as basis functions. The relations, Lemmas, and Theorems of 

Section (3) take place in creating the solving algorithm. 

 

Consider the two-dimensional integral equation on the following form: 

 

𝑓1(𝑥, 𝑦, 𝑢(𝑥, 𝑦)) + ∫
𝑔

𝑎
∫
ℎ

𝑐
𝑓2(𝑥, 𝑠, 𝑦, 𝑡, 𝑢(𝑠, 𝑡))𝑑𝑡 𝑑𝑠 = 0,   (43) 

where 𝑥 ∈ [𝑎, 𝑏], 𝑦 ∈ [𝑐, 𝑑], 𝑔 ∈ {𝑥, 𝑏}, ℎ ∈ {𝑦, 𝑑}, 𝑓1 is a polynomial with respect to 𝑢, and 𝑓2 is a polynomial with 

respect to 𝑠, 𝑡, and 𝑢. 

The integral equation should be shifted to the domain 𝑥, 𝑦 ∈ [−1,1]. Then the unknown function is expanded, as 

illustrated below. 

 

Expanding the unknown function of Eq. (43), 𝑢(𝑥, 𝑦), as a double summation truncated series as follows: 

 

𝑢(𝑥, 𝑦) ≈ 𝑢𝑁,𝑀(𝑥, 𝑦) = ∑𝑁𝑖=0 ∑
𝑀
𝑗=0 𝑐𝑖,𝑗  𝐷𝐿𝑖(𝑥)𝐷𝐿𝑗(𝑦),   (44) 

 

for some 𝑁,𝑀 ∈ ℕ. 

 

Substituting from Eq. (44) into the integral equation (43) to get the residue function: 

 

𝑅𝑁,𝑀(𝑥, 𝑦) = 𝑓1 (𝑥, 𝑦, ∑
𝑁
𝑖=0 ∑

𝑀
𝑗=0 𝑐𝑖,𝑗  𝐷𝐿𝑖(𝑥)𝐷𝐿𝑗(𝑦)) + ∫

𝐺

−1
∫
𝐻

−1
𝑓2 (𝑥, 𝑠, 𝑦, 𝑡, ∑

𝑁
𝑖=0 ∑

𝑀
𝑗=0 𝑐𝑖,𝑗 𝐷𝐿𝑖(𝑠)𝐷𝐿𝑗(𝑡)) 𝑑𝑡𝑑𝑠. 

(45) 

 

where 𝐺 and 𝐻 are the shifted values of 𝑔 and ℎ. 

 

Collocating the residue function, (45), by the set of 𝑁 + 1 and 𝑀 + 1 Legendre Gauss Lobatto (LGL) quadrature 

points for the independent variables 𝑥 and 𝑦, respectively, to get a system of (𝑁 + 1)(𝑀 + 1) algebraic equations. 

Solving this system to obtain the unknown coefficients, 𝑐𝑖,𝑗. Hence, the semi-analytic approximate solution is ready. 

 

In the following section, some test problems will be solved to ensure the accuracy and efficiency of the introduced 

method. 

 

5. Examples 

This section will apply the introduced method to approximate some types of two-dimensional integral equations. 

The approximate solutions are compared with the exact ones, and the error is calculated and presented in tables and 

graphs to show the accuracy and efficiency of the introduced method. 

 

Example 1.  Consider the following nonlinear two-dimensional integral equation [33]: 
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𝑢(𝑥, 𝑦) = 𝑥 + 𝑦 −
1

12
𝑥𝑦(𝑥3 + 4𝑥2𝑦 + 4𝑥𝑦2 + 𝑦3) + ∫ ∫ (𝑥 + 𝑦 − 𝑡 − 𝑠)(𝑢(𝑠, 𝑡))

2
𝑑𝑠

𝑥

0
𝑑𝑡

𝑦

0
,  (46) 

 

where 𝑥, 𝑦 ∈  [0,1], with exact solution 𝑢(𝑥, 𝑦) = 𝑥 + 𝑦. Shifting the domain to the region {(𝑥, 𝑦)| 𝑥, 𝑦 ∈  [−1,1]} to 

get: 

 

𝑢(𝑥, 𝑦) =
1

2
𝑥 +

1

2
𝑦 −

1

384
(𝑥 + 1)(𝑦 + 1)((𝑥 + 1)3 + 4(𝑥 + 1)2(𝑦 + 1) + 4(𝑥 + 1)(𝑦 + 1)2 + (𝑦 + 1)3)

+
1

8
∫ ∫ (𝑥 + 𝑦 − 𝑡 − 𝑠)(𝑢(𝑠, 𝑡))

2
𝑑𝑠

𝑥

−1
𝑑𝑡

𝑦

−1
,

 (47) 

 

with exact solution 𝑢(𝑥, 𝑦) =
1

2
𝑥 +

1

2
𝑦 + 1. 

 

Using the expansion (44), the residue function takes the form: 

 

𝑅𝑁.𝑀(𝑥, 𝑦) =
1

2
𝑥 +

1

2
𝑦 −

1

384
(𝑥 + 1)(𝑦 + 1)((𝑥 + 1)3 + 4(𝑥 + 1)2(𝑦 + 1) + 4(𝑥 + 1)(𝑦 + 1)2 + (𝑦 + 1)3)  

−∑𝑁𝑖=0 ∑
𝑀
𝑗=0 𝑐𝑖,𝑗  𝐷𝐿𝑖(𝑥)𝐷𝐿𝑗(𝑦)

+
1

8
∑𝑁𝑖=0 ∑

𝑀
𝑗=0 ∑

𝑁
𝑎=0 ∑

𝑀
𝑏=0 𝑐𝑖,𝑗  𝑐𝑎,𝑏 ((𝑥 + 𝑦) ∫ 𝐷𝐿𝑖(𝑠)𝐷𝐿𝑎(𝑠) 𝑑𝑠

𝑥

−1
∫ 𝐷𝐿𝑗(𝑡)𝐷𝐿𝑏(𝑡) 𝑑𝑡
𝑦

−1

−∫ 𝐷𝐿𝑖(𝑠)𝐷𝐿𝑎(𝑠) 𝑑𝑠
𝑥

−1
∫ 𝑡 𝐷𝐿𝑗(𝑡)𝐷𝐿𝑏(𝑡) 𝑑𝑡
𝑦

−1
− ∫ 𝑠 𝐷𝐿𝑖(𝑠)𝐷𝐿𝑎(𝑠) 𝑑𝑠

𝑥

−1
∫ 𝐷𝐿𝑗(𝑡)𝐷𝐿𝑏(𝑡) 𝑑𝑡
𝑦

−1
).

 (48) 

 

Finally, the integrals involved in Eq. (48) can be calculated from Theorem (2). 

 

Exact solution is obtained at 𝑁 = 𝑀 = 1 using the presented method, while the authors of [33] achieved an error 

of 10−5 after 32 iterations. 

 

Example 2.  Consider the following nonlinear two-dimensional integral equation [34]:  

 

 𝑢(𝑥, 𝑦) = 𝑥2𝑒2𝑦 +
1

5
𝑦3 − ∫

𝑦

0
∫
1

0
𝑦2𝑒−4𝑡(𝑢(𝑠, 𝑡))2𝑑𝑠𝑑𝑡,    (49) 

 

where 𝑥, 𝑦 ∈ [0,1], with exact solution 𝑢(𝑥, 𝑦) = 𝑥2𝑒2𝑦.  

 

 𝑢(𝑥, 𝑦) =
(𝑥+1)2

4
𝑒𝑦+1 +

1

40
(𝑦 + 1)3 −

𝑒−2

16
(𝑦 + 1)2 ∫

1

−1
∫
𝑦

−1
𝑒−2𝑡(𝑢(𝑠, 𝑡))2𝑑𝑡𝑑𝑠,   (50) 

 

where 𝑥, 𝑦 ∈ [−1,1], with exact solution 𝑢(𝑥, 𝑦) =
(𝑥+1)2

4
𝑒𝑦+1. 

 

Using the expansion (44), the residue function takes the form: 

 

 
𝑅𝑁,𝑀(𝑥, 𝑦) =

(𝑥+1)2

4
𝑒𝑦+1 +

1

40
(𝑦 + 1)3 − ∑𝑁𝑖=0 ∑

𝑀
𝑗=0 𝑐𝑖,𝑗  𝐷𝐿𝑖(𝑥)𝐷𝐿𝑗(𝑦)                                        

−
𝑒−2

16
(𝑦 + 1)2 ∑𝑁𝑖=0 ∑

𝑁
𝛼=0 ∑

𝑀
𝑗=0 ∑

𝑀
𝛽=0 𝑐𝑖,𝑗𝑐𝛼,𝛽 ∫

1

−1
𝐷𝐿𝑖(𝑠)𝐷𝐿𝛼(𝑠)𝑑𝑠 ∫

𝑦

−1
𝑒−2𝑡𝐷𝐿𝑗(𝑡)𝐷𝐿𝛽(𝑡)𝑑𝑡,

 (51) 

 

By expanding the exponential function 𝑒−2𝑡 as follows: 

 

 𝑒−2𝑡 ≈ ∑𝐿𝑘=0
(−2𝑡)𝑘

𝑘!
.     (52) 

 

 The residue function becomes: 

 

𝑅𝑁,𝑀(𝑥, 𝑦) =
(𝑥+1)2

4
𝑒𝑦+1 +

1

40
(𝑦 + 1)3 − ∑𝑁𝑖=0 ∑

𝑀
𝑗=0 𝑐𝑖,𝑗  𝐷𝐿𝑖(𝑥)𝐷𝐿𝑗(𝑦)                                                        

−
𝑒−2

16
(𝑦 + 1)2∑𝑁𝑖=0 ∑

𝑁
𝛼=0 ∑

𝑀
𝑗=0 ∑

𝑀
𝛽=0 ∑

𝐿
𝑘=0

(−2)𝑘

𝑘!
𝑐𝑖,𝑗𝑐𝛼,𝛽 ∫

1

−1
𝐷𝐿𝑖(𝑠)𝐷𝐿𝛼(𝑠)𝑑𝑠 ∫

𝑦

−1
𝑡𝑘𝐷𝐿𝑗(𝑡)𝐷𝐿𝛽(𝑡)𝑑𝑡.

     (53) 

 

From Theorem (1) for 𝑚 = 0, and Theorem (2), integrals in Eq. (53) can be calculated. 
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Table 1 presents the point-wise absolute error (|𝐸|) compared with other methods. 

 

Table 1: |𝑬| for Example (2). 

𝑥 = 𝑦 [35] [36] Presented Method 

0.0 0.00𝐸 − 00 6.43𝐸 − 03 0.00𝐸 − 00 

0.1 9.39𝐸 − 04 6.94𝐸 − 03 3.12𝐸 − 06 

0.2 6.35𝐸 − 04 4.31𝐸 − 02 2.30𝐸 − 05 

0.3 6.61𝐸 − 04 9.82𝐸 − 02 6.92𝐸 − 05 

0.4 1.02𝐸 − 03 1.68𝐸 − 01 1.47𝐸 − 04 

0.5 1.69𝐸 − 04 2.63𝐸 − 01 2.60𝐸 − 04 

0.6 1.24𝐸 − 03 3.88𝐸 − 01 4.00𝐸 − 04 

0.7 1.13𝐸 − 03 5.33𝐸 − 01 5.44𝐸 − 04 

0.8 1.42𝐸 − 03 6.91𝐸 − 01 6.72𝐸 − 04 

0.9 2.17𝐸 − 03 8.85𝐸 − 01 7.81𝐸 − 04 

 

 

Figure 1 shows the log error, which confirms the stability of the presented method. 

 

Figure 1: Log error graph for Example (2). 

 

Example 3.  Consider the following nonlinear two-dimensional integral equation [37]: 

 

𝑢(𝑥, 𝑦) = 𝑥 𝑐𝑜𝑠 𝑦 +
1

20
(𝑐𝑜𝑠41 − 1) −

1

12
𝑠𝑖𝑛 1 (𝑐𝑜𝑠21 + 2) + ∫ ∫ (𝑠 𝑠𝑖𝑛 𝑡 + 1)(𝑢(𝑠, 𝑡))3𝑑𝑠

1

0
𝑑𝑡

1

0
 (54) 

 

where 𝑥, 𝑦 ∈  [0,1], with exact solution 𝑢(𝑥, 𝑦) =  𝑥 𝑐𝑜𝑠 𝑦. 

 

𝑢(𝑥, 𝑦) =
1

2
𝑥 cos (

𝑦+1

2
) +

1

2
cos (

𝑦+1

2
) +

1

20
(cos4 1 − 1) −

1

12
sin 1 (cos21 + 2)

+
1

4
∫ ∫ (

1

2
𝑠 sin (

𝑡+1

2
) +

1

2
sin (

𝑡+1

2
) + 1) (𝑢(𝑠, 𝑡))3𝑑𝑠

1

−1
𝑑𝑡

1

−1
,

   (55) 

 

where 𝑥, 𝑦 ∈  [−1,1], with exact solution 𝑢(𝑥, 𝑦) = (
𝑥+1

2
)  𝑐𝑜𝑠 (

𝑦+1

2
). 
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Using the expansion (44), the residue function takes the form: 

 

𝑅𝑁,𝑀(𝑥, 𝑦) = (
𝑥+1

2
) 𝑐𝑜𝑠 (

𝑦+1

2
) +

1

20
(𝑐𝑜𝑠4 1 − 1) −

1

12
𝑠𝑖𝑛 1 (𝑐𝑜𝑠21 + 2) − ∑𝑁𝑖=0 ∑

𝑀
𝑗=0 𝑐𝑖,𝑗  𝐷𝐿𝑖(𝑥)𝐷𝐿𝑗(𝑦)

+∑𝑁𝑖=0 ∑
𝑀
𝑗=0 ∑

𝑁
𝑎=0 ∑

𝑀
𝑏=0 ∑

𝑁
𝛼=0 ∑

𝑀
𝛽=0

𝑐𝑖,𝑗𝑐𝑎,𝑏𝑐𝛼,𝛽

4
(∫ 𝐷𝐿𝑖(𝑠)𝐷𝐿𝑎(𝑠)𝐷𝐿𝛼(𝑠) 𝑑𝑠

1

−1
∫ 𝐷𝐿𝑗(𝑡)𝐷𝐿𝑏(𝑡)𝐷𝐿𝛽(𝑡) 𝑑𝑡
1

−1

+ ∫ (
𝑠+1

2
)𝐷𝐿𝑖(𝑠)𝐷𝐿𝑎(𝑠)𝐷𝐿𝛼(𝑠) 𝑑𝑠

1

−1
∫ sin (

𝑡+1

2
)𝐷𝐿𝑗(𝑡)𝐷𝐿𝑏(𝑡)𝐷𝐿𝛽(𝑡) 𝑑𝑡

1

−1
) .

  (56) 

 

Using the formula of the sine of the summation of two angles and using Taylor series to get: 

 

sin (
𝑡+1

2
) = ∑

(−1)𝑘

22𝑘(2𝑘)!
((

cos
1

2

2(2𝑘+1)
) 𝑡2𝑘+1 + (sin

1

2
) 𝑡2𝑘)𝐿

𝑘=0    (57) 

 

Using Eq. (57), the residue function in Eq. (56) takes the form: 

 

𝑅𝑁,𝑀(𝑥, 𝑦) = (
𝑥+1

2
) 𝑐𝑜𝑠 (

𝑦+1

2
) +

1

20
(𝑐𝑜𝑠4 1 − 1) −

1

12
𝑠𝑖𝑛 1 (𝑐𝑜𝑠21 + 2) − ∑𝑁𝑖=0 ∑

𝑀
𝑗=0 𝑐𝑖,𝑗  𝐷𝐿𝑖(𝑥)𝐷𝐿𝑗(𝑦)

+∑𝑁𝑖=0 ∑
𝑀
𝑗=0 ∑

𝑁
𝑎=0 ∑

𝑀
𝑏=0 ∑

𝑁
𝛼=0 ∑

𝑀
𝛽=0

𝑐𝑖,𝑗𝑐𝑎,𝑏𝑐𝛼,𝛽

4
(∫ 𝐷𝐿𝑖(𝑠)𝐷𝐿𝑎(𝑠)𝐷𝐿𝛼(𝑠) 𝑑𝑠

1

−1
∫ 𝐷𝐿𝑗(𝑡)𝐷𝐿𝑏(𝑡)𝐷𝐿𝛽(𝑡) 𝑑𝑡
1

−1

+
1

2
∑𝐿𝑘=0

(−1)𝑘

22𝑘(2𝑘)!
(∫ 𝑠 𝐷𝐿𝑖(𝑠)𝐷𝐿𝑎(𝑠)𝐷𝐿𝛼(𝑠) 𝑑𝑠

1

−1
+ ∫ 𝐷𝐿𝑖(𝑠)𝐷𝐿𝑎(𝑠)𝐷𝐿𝛼(𝑠) 𝑑𝑠

1

−1
)

× (
𝑐𝑜𝑠

1

2

2(2𝑘+1)
∫ 𝑡2𝑘+1𝐷𝐿𝑗(𝑡)𝐷𝐿𝑏(𝑡)𝐷𝐿𝛽(𝑡) 𝑑𝑡
1

−1
+ (𝑠𝑖𝑛

1

2
) ∫ 𝑡2𝑘𝐷𝐿𝑗(𝑡)𝐷𝐿𝑏(𝑡)𝐷𝐿𝛽(𝑡) 𝑑𝑡

1

−1
)) .

 (58) 

 

Using Lemma (1) together with Theorem (1) to calculate the integrals in Eq. (58). 

 

Table 2 presents the maximum absolute error (MAE) for 𝑁 = 2 and 𝐿 = 3, compared with other methods for 

different values of 𝑀. 

 

Table 2: MAE for Example (3). 

𝑀 [38] [33] [37] Presented Method 

2    −      9.60𝐸 − 02   −      2.42𝐸 − 03 

4  5.20𝐸 − 02 4.30𝐸 − 02 6.70𝐸 − 05 9.12𝐸 − 06 

8  2.10𝐸 − 02 1.70𝐸 − 02 2.43𝐸 − 06 9.28𝐸 − 09 

16 6.80𝐸 − 03 5.40𝐸 − 03 7.09𝐸 − 08   −      

 

Figure 2 shows the log error, which confirms the accuracy of the presented method. 
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Figure 2: Log error graph for Example (3). 

 

An algorithm that shows accuracy and efficiency for some types of nonlinear two-dimensional integral equations 

is considered to be more general. It should also be effective for linear two-dimensional integral equations such as the 

next example. 

 

Example 4.  Consider the following linear two-dimensional integral equation [34]:  

 

 𝑢(𝑥, 𝑦) = 𝑥2𝑒𝑦 −
1

3
𝑥3𝑦2 + ∫

𝑥

0
∫
1

0
𝑦2𝑒−𝑡𝑢(𝑠, 𝑡)𝑑𝑡 𝑑𝑠,   (59) 

 

 where 𝑥, 𝑦 ∈ [0,1], with exact solution 𝑢(𝑥, 𝑦) = 𝑥2𝑒𝑦 . Shifting the domain to the region {(𝑥, 𝑦)|𝑥, 𝑦 ∈ [−1,1]} to 

get:  

 

 𝑢(𝑥, 𝑦) =
(𝑥+1)2𝑒

𝑦+1
2

4
−

(𝑥+1)3(𝑦+1)2

96
+

(𝑦+1)2

16√𝑒
∫
𝑥

−1
∫
1

−1
𝑒−

𝑡

2𝑢(𝑠, 𝑡)𝑑𝑡 𝑑𝑠,   (60) 

 

with exact solution 𝑢(𝑥, 𝑦) =
(𝑥+1)2𝑒

𝑦+1
2

4
. 

 

Using the expansion (44), the residue function takes the form: 

 

𝑅𝑁,𝑀(𝑥, 𝑦) =
(𝑥+1)2𝑒

𝑦+1
2

4
−

(𝑥+1)3(𝑦+1)2

96
+∑𝑁𝑖=0 ∑

𝑀
𝑗=0 𝑐𝑖,𝑗 (

(𝑦+1)2

16√𝑒
∫
𝑥

−1
𝐷𝐿𝑖(𝑠)𝑑𝑠 ∫

1

−1
𝑒−

𝑡

2𝐷𝐿𝑗(𝑡)𝑑𝑡 − 𝐷𝐿𝑖(𝑥)𝐷𝐿𝑗(𝑦)) 

(61) 

 

By expanding the exponential function 𝑒−
𝑡

2 as follows:  

 

 𝑒−
𝑡

2 ≈ ∑𝐿𝑘=0
(−

𝑡

2
)
𝑘

𝑘!
.      (62) 

 

 The residue function becomes:  
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𝑅𝑁,𝑀(𝑥, 𝑦) =
(𝑥+1)2𝑒

𝑦+1
2

4
−

(𝑥+1)3(𝑦+1)2

96
                                                                                      

+∑𝑁𝑖=0 ∑
𝑀
𝑗=0 𝑐𝑖,𝑗 (∑

𝐿
𝑘=0

(−1)𝑘(𝑦+1)2

2𝑘+4𝑘!√𝑒
∫
𝑥

−1
𝐷𝐿𝑖(𝑠)𝑑𝑠 ∫

1

−1
𝑡𝑘𝐷𝐿𝑗(𝑡)𝑑𝑡 − 𝐷𝐿𝑖(𝑥)𝐷𝐿𝑗(𝑦)) .

   (63) 

 

Calculating the integrals in Eq. (63) with the aid of Lemma (2) for 𝑚 = 0 and Theorem (1) for 𝑞 = 0. 

 

Table 3 presents the |𝐸| at 𝐿 = 10, for different values of 𝑁 and 𝑀. 

 

Table 3: |𝑬| for Example (𝟒) at 𝑵 = 𝑴 = 𝟒 and 𝑵 = 𝑴 = 𝟖. 

𝑥 = 𝑦 
𝑁 = 𝑀 = 4 𝑁 = 𝑀 = 8 

[35] [34] Presented Method [35] [34] Presented Method 

0.0 2.27𝐸 − 08 1.04𝐸 − 17 0.00𝐸 − 00 6.40𝐸 − 10 7.39𝐸 − 17 0.00𝐸 − 00 

0.1 4.28𝐸 − 05 3.74𝐸 − 08 2.47𝐸 − 07 7.06𝐸 − 05 1.50𝐸 − 13 3.86𝐸 − 13 

0.2 2.00𝐸 − 04 7.58𝐸 − 07 4.34𝐸 − 07 3.42𝐸 − 04 1.18𝐸 − 12 1.35𝐸 − 12 

0.3 4.72𝐸 − 04 2.16𝐸 − 06 3.40𝐸 − 06 8.37𝐸 − 04 1.36𝐸 − 12 1.44𝐸 − 12 

0.4 7.69𝐸 − 04 6.25𝐸 − 07 5.08𝐸 − 06 1.47𝐸 − 03 5.44𝐸 − 12 8.03𝐸 − 12 

0.5 8.79𝐸 − 04 6.47𝐸 − 06 2.66𝐸 − 10 2.03𝐸 − 03 8.49𝐸 − 12 4.73𝐸 − 15 

0.6 4.22𝐸 − 04 1.45𝐸 − 05 1.18𝐸 − 05 2.13𝐸 − 03 1.14𝐸 − 11 1.84𝐸 − 11 

0.7 1.18𝐸 − 03 1.06𝐸 − 05 1.98𝐸 − 05 1.18𝐸 − 03 2.58𝐸 − 11 8.21𝐸 − 12 

0.8 2.27𝐸 − 08 1.62𝐸 − 05 7.68𝐸 − 06 1.66𝐸 − 03 1.15𝐸 − 12 2.29𝐸 − 11 

0.9 2.27𝐸 − 08 4.16𝐸 − 05 2.29𝐸 − 05 7.49𝐸 − 03 3.73𝐸 − 11 3.38𝐸 − 11 

1.0 2.27𝐸 − 08 5.62𝐸 − 05 8.70𝐸 − 09 9.77𝐸 − 03 7.14𝐸 − 11 1.54𝐸 − 13 

 

Figure 3 shows the log error, which confirms the stability of the presented method. 

 

 

Figure 3: Log error graph for Example (4). 

A one-dimensional integral equation can be considered as a special case of a two-dimensional one. Thus, the 

algorithm that solves two-dimensional integral equations is more general, and it is also valid for one-dimensional 

ones. 
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Example 5.  Consider the following nonlinear one-dimensional integral equation: 

 

 𝑢(𝑥) =
3

2
−

1

2
𝑒−2𝑥 − ∫

𝑥

0
(𝑢(𝑡) + (𝑢(𝑡))

2
) 𝑑𝑡,    (64) 

 

where 𝑥 ∈ [0,1], with exact solution 𝑢(𝑥) = 𝑒−𝑥. Shifting the domain to [−1,1] to get: 

 

 𝑢(𝑥) =
3

2
−

1

2
𝑒−(𝑥+1) −

1

2
∫
𝑥

−1
(𝑢(𝑡) + (𝑢(𝑡))

2
) 𝑑𝑡,    (65) 

 

with exact solution 𝑢(𝑥) = 𝑒−
𝑥+1

2 . 

 

By setting 𝑀 = 0 in Eq. (44), considering the function 𝑢 is constant with respect to 𝑦, the expansion takes the 

form: 

 

𝑢(𝑥) ≈ 𝑢𝑁,0(𝑥) = ∑𝑁𝑖=0 𝑐𝑖,0 𝐷𝐿𝑖(𝑥),    (66) 

 

Using the expansion (66), the residue function takes the form: 

 

 𝑅𝑁,0(𝑥) = −
3

2
+

1

2
𝑒−(𝑥+1) +∑ 𝑐𝑖,0 (𝐷𝐿𝑖(𝑥) +

1

2
∫
𝑥

−1
𝐷𝐿𝑖(𝑡)𝑑𝑡 +

1

2
∑ 𝑐𝑗,0
𝑁
𝑗=0 ∫

𝑥

−1
𝐷𝐿𝑖(𝑡)𝐷𝐿𝑗(𝑡)𝑑𝑡)

𝑁
𝑖=0 .     (67) 

 

Table 4 presents the MAE for different values of 𝑁. 

 

Table 4: MAE for Example (5). 

𝑁 [39] Presented Method 

1 6.37𝐸 − 02 5.85𝐸 − 02 

3 5.35𝐸 − 04 3.26𝐸 − 04 

5 1.53𝐸 − 06 6.44𝐸 − 07 

7 2.17𝐸 − 09 7.03𝐸 − 10 

9 7.50𝐸 − 12 4.79𝐸 − 13 

 

Figure 4 shows the log error, which confirms the accuracy of the presented method. 

 

Figure 4: Log error graph for Example (5). 
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6. Concluding Remarks 

The presented method proved its accuracy, efficiency, and stability of the approximate solutions in solving some 

types of two-dimensional and one-dimensional integral equations. This is affirmed through some test problems, 

supported by tables and graphs to display the results. In addition, some important integration formulas are created and 

proved. They played a significant role in calculating the integral of some nonlinear terms. 
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