[1] A. C. Eringen, Nonlocal polar elastic continua, International Journal of Engineering Science, Vol. 10, pp. 1-16, 1972.
[2] A. C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, Journal of Applied Physics, Vol. 54, pp. 4703-4710, 1983.
[3] A. C. Eringen, D. Edelen, On nonlocal elasticity, International Journal of Engineering Science, Vol. 10, pp. 233-248, 1972.
[4] A. E. Abouelregal, B. O. Mohamed, Fractional order thermoelasticity for a functionally graded thermoelastic nanobeam induced by a sinusoidal pulse heating, Journal of Computational and Theoretical Nanoscience, Vol. 15, pp. 1233-1242, 2018.
[5] A. E. Abouelregal, A. M. Zenkour, Thermoelastic response of nanobeam resonators subjected to exponential decaying time varying load, Journal of Theoretical and Applied Mechanics, Vol. 55, pp. 937-948, 2017.
[6] A. E. Abouelregal, A. M. Zenkour, Nonlocal thermoelastic model for temperature-dependent thermal conductivity nanobeams due to dynamic varying loads, Microsystem Technologies, Vol. 24, pp. 1189-1199, 2018.
[7] J. Afzali, Z. Alemipour, M. Hesam, High resolution image with multi-wall carbon nanotube atomic force microscopy tip (research note), International Journal of Engineering, Vol. 26, pp. 671-676, 2013.
[8] J. W. R. S. Dhaliwal, Uniqueness in generalized nonlocal thermoelasticity, Journal of Thermal Stresses, Vol. 16, pp. 71-77, 1993.
[9] E. Inan, A. Eringen, Nonlocal theory of wave propagation in thermoelastic plates, International Journal of Engineering Science, Vol. 29, pp. 831-843, 1991.
[10] Z. Khisaeva, M. Ostoja-Starzewski, Thermoelastic damping in nanomechanical resonators with finite wave speeds, Journal of Thermal Stresses, Vol. 29, pp. 201-216, 2006.
[11] C. C. Koutsoumaris, K. Eptaimeros, G. Tsamasphyros, A different approach to Eringen's nonlocal integral stress model with applications for beams, International Journal of Solids and Structures, Vol. 112, pp. 222-238, 2017.
[12] K. Liew, Y. Zhang, L. Zhang, Nonlocal elasticity theory for graphene modeling and simulation: prospects and challenges, Journal of Modeling in Mechanics and Materials, Vol. 1, pp., 2017.
[13] H. W. Lord, Y. Shulman, A generalized dynamical theory of thermoelasticity, Journal of the Mechanics and Physics of Solids, Vol. 15, pp. 299-309, 1967.
[15] P. Ribeiro, Non-local effects on the non-linear modes of vibration of carbon nanotubes under electrostatic actuation, International Journal of Non-Linear Mechanics, Vol. 87, pp. 1-20, 2016.
[16] A. Zenkour, A. Abouelregal, Magnetothermoelastic Interaction in a Rod of Finite Length Subjected to Moving Heat Sources Via Eringen’s Nonlocal Model, Journal of Engineering Physics and Thermophysics, Vol. 95, pp. 651-661, 2022.
[17] A. M. Zenkour, A. E. Abouelregal, Nonlocal thermoelastic vibrations for variable thermal conductivity nanobeams due to harmonically varying heat, Journal of Vibroengineering, Vol. 16, pp. 3665-3678, 2014.
[18] A. M. Zenkour, A. E. Abouelregal, Nonlocal thermoelastic nanobeam subjected to a sinusoidal pulse heating and temperature-dependent physical properties, Microsystem Technologies, Vol. 21, pp. 1767-1776, 2015.
[19] A. M. Zenkour, A. E. Abouelregal, Nonlinear effects of thermo-sensitive nanobeams via a nonlocal thermoelasticity model with relaxation time, Microsystem Technologies, Vol. 22, pp. 2407-2415, 2016.
[20] N. Sarkar, Thermoelastic responses of a finite rod due to nonlocal heat conduction, Acta Mechanica, Vol. 231, pp. 947-955, 2020.
[21] E. Zarezadeh, V. Hosseini, A. Hadi, Torsional vibration of functionally graded nano-rod under magnetic field supported by a generalized torsional foundation based on nonlocal elasticity theory, Mechanics Based Design of Structures and Machines, Vol. 48, pp. 480-495, 2020.
[22] S. Mondal, Memory response for thermal distributions moving over a magneto-thermoelastic rod under Eringen’s nonlocal theory, Journal of Thermal Stresses, Vol. 43, pp. 72-89, 2020.
[23] F. S. Bayones, S. Mondal, S. M. Abo-Dahab, A. A. Kilany, Effect of moving heat source on a magneto-thermoelastic rod in the context of Eringen’s nonlocal theory under three-phase lag with a memory dependent derivative, Mechanics Based Design of Structures and Machines, Vol. 51, pp. 2501-2516, 2023.
[24] A. E. Abouelregal, Thermomagnetic behavior of a nonlocal finite elastic rod heated by a moving heat source via a fractional derivative heat equation with a non-singular kernel, Waves in Random and Complex Media, Vol. 5, pp. 3056-3076, 2024.
[25] N. Satish, S. Gunabal, K. B. Raju, S. Narendar, Thermoelastic damping in nonlocal rod using three-phase lag heat conduction model, Journal of Thermal Stresses, Vol. 44, pp. 955-969, 2021.
[26] T. He, L. Cao, A problem of generalized magneto-thermoelastic thin slim strip subjected to a moving heat source, Mathematical and Computer Modelling, Vol. 49, pp. 1710-1720, 2009.
[27] I. A. Abbas, The effects of relaxation times and a moving heat source on a two-temperature generalized thermoelastic thin slim strip, Canadian Journal of Physics, Vol. 93, pp. 585-590, 2015.
[28] C. Li, H. Guo, X. Tian, Soret effect on the shock responses of generalized diffusion-thermoelasticity, Journal of Thermal Stresses, Vol. 40, pp. 1563-1574, 2017.
[29] S. M. Abo-Dahab, A. E. Abouelregal, M. Marin, Generalized thermoelastic functionally graded on a thin slim strip non-Gaussian laser beam, Symmetry, Vol. 12, pp. 1094, 2020.
[30] M. H. Aljadani, A. M. Zenkour, Effect of hydrostatic initial stress on a rotating half-space in the context of a two-relaxation power-law model, Mathematics, Vol. 10, pp. 4727, 2022.
[31] M. H. Aljadani, A. M. Zenkour, A Modified Two-Relaxation Thermoelastic Model for a Thermal Shock of Rotating Infinite Medium, Materials, Vol. 15, pp. 9056, 2022.
[32] M. A. Kutbi, A. M. Zenkour, Thermomechanical waves in an axisymmetric rotating disk using refined Green–Naghdi models, International Journal of Applied Mechanics, Vol. 13, pp. 2150035, 2021.
[33] M. A. Kutbi, A. M. Zenkour, Thermoelastic interactions in an unbounded solid due to a continuous heat source using the modified TPL G–N model, Waves in Random and Complex Media, Vol. 32, pp. 1363-1384, 2022.
[34] A. M. Zenkour, Wave propagation of a gravitated piezo-thermoelastic half-space via a refined multi-phase-lags theory, Mechanics of Advanced Materials and Structures, Vol. 27, pp. 1923-1934, 2020.
[35] A. M. Zenkour, On generalized three-phase-lag models in photo-thermoelasticity, International Journal of Applied Mechanics, Vol. 14, pp. 2250005, 2022.
[36] M. A. Kutbi, A. M. Zenkour, Modified couple stress model for thermoelastic microbeams due to temperature pulse heating, Journal of Computational Applied Mechanics, Vol. 53, pp. 83-101, 2022.
[37] M. Sobhy, A. M. Zenkour, Refined Lord–Shulman theory for 1D response of skin tissue under ramp-type heat, Materials, Vol. 15, pp. 6292, 2022.
[38] M. A. Biot, Thermoelasticity and irreversible thermodynamics, Journal of Applied Physics, Vol. 27, pp. 240-253, 1956.
[39] G. Honig, U. Hirdes, A method for the numerical inversion of Laplace transforms, Journal of Computational and Applied Mathematics, Vol. 10, pp. 113-132, 1984.