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Abstract 

In this article, a new nonlocal model of the heat equation based on Eringen’s 

nonlocal elasticity and Lord–Shulman one relaxation time is introduced. The 

thermoelastic communications in an isotropic, homogeneous thin slim strip 

under a traveling heat source and placed in a magnetic field are studied. The 

Laplace transform technique is adopted to get the transform domain solution 

in a closed form. The outcomes of all variables are determined in the Laplace 

domain and then they are transferred to the physical domain by employing its 

fast inversion technique. The impacts of the nonlocal index and applied 

magnetic field in addition to the speed of the heat source parameter on the 

quantities are discussed in detail. The current analysis is believed to be 

beneficial for the theoretical formulation of thermoelastic analyses at the 

nanoscale, and the outcomes are useful to the practical design of nanosized 

configurations in thermal environments. 
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1. Introduction 

The nonlocal theory of elasticity is applied to explore nanomechanics efforts. In the very first years, the models of 

the nonlocal beams (rods, thin strips) demanded an increasing amount of attention. Eringen [1, 2] and Eringen and 

Edelen [3] established the nonlocal continuum mechanics theory to address issues with nanostructures at a 

microscopic scale. The investigators in what follows, have used the nonlocal theory of thermoelasticity [4-19] in their 

investigations. 

Recently, Sarkar [20] examined the transient responses of a finite-length thermoelastic rod exposed to a moving 

source of heat using Eringen's nonlocal elasticity theory along with the thermoelasticity theory introduced by Lord 

and Shulman. Nonlocal elasticity theory was used by Zarezadeh et al. [21] to investigate the impact of nonlocal 

magneto-thermoelastic responses on FG nano-rod. In the context of the Lord-Shulman (LS) and thermoelasticity 

theory of three-phase-lag according to Eringen's nonlocal elasticity, Mondal [22] and Bayones et al. [23] studied the 
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transient phenomena resulting from the impact of a moving heat source and a magnetic field within a rod. Abouelregal 

[24] discussed the size-dependent behavior of a finite thermoelastic rod influenced by a moving heat source using 

Eringen's nonlocal elasticity theory. In the framework of a three-phase-lag heat conduction model, Satish et al. [25] 

investigated the thermoelastic damping of a longitudinally vibrating nanorod at a small scale using Eringen's nonlocal 

elasticity theory. 

Various applications have been considered for the thermoelastic responses of thin slim strips in the literature. He 

and Cao [26] used the LS theory to talk about the magneto-thermoelastic model of a narrow, slim strip subjected to a 

moving source of heat and placed in a magnetic field. Abbas [27] addressed the issue of narrow, slender strips using 

the Green and Lindsay hypothesis of two temperatures. A problem of transient response for a thin strip with one end 

sensitive to thermal and chemical disturbances was addressed by Li et al. [28]. Abo-Dahab et al. [29] examined the 

thermoelastic response of an FG thin slim strip based on the LS theory. 

All investigations concerning the thermoelastic responses of thin slim strips are considered in the classical (local) 

theory of elasticity. In this research work, within the framework of Eringen’s nonlocal theory, a finite thin slim strip 

magneto-thermoelastic dynamic behavior is investigated. The strip is placed in an external magnetic field, fixed at 

both endpoints, and subjected to a moving heat supply. The Laplace technique has been adopted to introduce and 

solve thermoelastic coupled equations. The distributions of temperature, displacement, dilatation, and stress along the 

axial direction are studied in both cases of local and nonlocal elasticity. The impacts of the velocity of the applied 

magnetic field, nonlocal parameter, and the moving source of heat on all variables are investigated. 

2. Nonlocal Thermoelasticity Theory 

Corresponding to the nonlocal elasticity theory by Eringen [1-3], the nonlocal stress components �̃�(�⃑�) at any point 

�⃑� in a solid can be stated as 

�̃�(�⃑�) = ∫ 𝜒(|�⃑� − �⃑�′|, 𝜉)
𝑉

�̃�(�⃑�′)d𝑉(�⃑�′), (1) 

where �̃�(�⃑�′) represent the classical local stress components at two neighboring points �⃑�′ and �⃑�, |�⃑� − �⃑�′| is the 
Euclidean space, 𝑉 is the elastic body volume, and the function 𝜒 represents a nonlocal Kernel indicating the impact 
of distant communications of material points between �⃑� and �⃑�′. Moreover, 𝜉 represents a material elastic nonlocal 
parameter provided by 𝜉 = 𝑒0𝑎/𝑙, which differs on inner 𝑎 and outer characteristic lengths 𝑙 by modifying constant 
𝑒0, contingent on each material. 𝜉 is a typical length that involves the microstructure evidence associated with the 
discreteness of the material. 

Considering that the material of the slim strip is isotropic, then the classical stress components �̃�(�⃑�′) associated 

with temperature 𝜃 is given by the following Neumann-Duhamel law: 

�̃�(�⃑�′) = 2𝜇 𝜀̃(�⃑�′) + [𝜆(∇ ∙ �⃑⃑�) − 𝛾𝜃]𝐼, (2) 

where 𝐼 is the identity tensor, 𝜀̃(�⃑�′) represents the tensor of a classical local strain and �⃑⃑�(�⃑�′) denote a reference point 
�⃑�′ displacement vector in the medium. The linear Cauchy’s infinitesimal strain relations are given by 

𝜀̃(�⃑�′) =
1

2
[∇�⃑⃑� + ∇(�⃑⃑�𝑇)]. (3) 

All field quantities are, in general, functions of (�⃑�, 𝑡), the direct vector/tensor notation is employed, 𝜃 = 𝑇 − 𝑇0 is 

the difference in temperature where 𝑇 and 𝑇0 denote the current and reference temperatures of the slim strip in its 

natural state expected to be such that |𝜃/𝑇0| ≪ 1, 𝛾 = (3𝜆 + 2𝜇)𝛼𝑡, 𝛼𝑡 is the linear expansion coefficient, 𝜆 and 𝜇 

being Lamé’s constants. 

The constitutive equations of gradient type for a suitable form of the nonlocal kernel can be represented by 

(1 − 𝜉2𝛻2)�̃�(�⃑�) = �̃�(�⃑�′), (4) 

which considers the impact of size on a nanostructure's response. 

The following equations of motion are produced by the balance of linear momentum 

∇ ∙ �̃� + �⃑� = 𝜌
𝜕2�⃑⃑⃑�

𝜕𝑡2 , (5) 

where �⃑� denotes the vector of outer body force and 𝜌 denotes the material density. Once applying Equation (4), the 
linear momentum balance, Equation (5), outcomes in the resulting equation of motion 

𝛻 ∙ �̃� + (1 − 𝜉2∇2)�⃑� = 𝜌(1 − 𝜉2∇2)
𝜕2 �⃑⃑⃑�

𝜕𝑡2, (6) 
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It should be noted that the nonlocal displacement field of a structure exposed to an outward body force field �⃑� and an 

inertial body force −𝜌
𝜕2�⃑⃑⃑�

𝜕𝑡2  is identical to that of a classical structure exposed to the force of exterior (1 − 𝜉2∇2)�⃑� and 

the force of inertial body −𝜌(1 − 𝜉2∇2)
𝜕2 �⃑⃑⃑�

𝜕𝑡2 . In the context of the temperature and displacement, the dynamic 

equations can be obtained as 

(𝜆 + 𝜇)∇(∇�⃑⃑�) + 𝜇∇2�⃑⃑� − 𝛾∇𝜃 + (1 − 𝜉2∇2)�⃑� = 𝜌(1 − 𝜉2∇2)
𝜕2�⃑⃑⃑�

𝜕𝑡2 . (7) 

When the internal characteristic length is disregarded, or when one assumes that a medium's particles are constantly 

dispersed, it is possible to conclude that 𝜉 = 0, and Equation (4) becomes the classical local thermoelasticity 

constitutive equation. The classical law of Fourier, which connects the vector of heat flux �⃑� to the temperature gradient 

as follows, forms the foundation of the classical theory of heat conductivity, upon which classical thermoelasticity is 

built: 

�⃑� = −𝐾∇𝜃, (8) 

where 𝐾 denotes the thermal conductivity. The heat conduction equation is provided by 

𝜌𝑐𝜈
𝜕𝜃

𝜕𝑡
+ 𝛾𝑇0

𝜕

𝜕𝑡
(∇ ∙ �⃑⃑�) = −∇ ∙ �⃑� + 𝑄, (9) 

where 𝑐𝜈 is the specific heat at constant deformation and 𝑄 is the external heat source. 

Modified Fourier's law of heat transfer was demonstrated as [30-35]  

(1 + ∑
𝑡0

𝑛

𝑛!

𝜕𝑛

𝜕𝑡𝑛
𝑁
𝑛=1 ) �⃑� = −𝐾∇𝜃, (10) 

where 𝑡0 represents the first relaxation time presented by Lord and Shulman. Taking the divergence of the sides of 
Equation (6) and using Equation (10), one obtains the equation of a refined generalized heat conduction extended by 
Lord and Shulman [36, 37] as 

𝐾∇2𝜃 = (1 + ∑
𝑡0

𝑛

𝑛!

𝜕𝑛

𝜕𝑡𝑛
𝑁
𝑛=1 ) [𝜌𝑐𝜈

𝜕𝜃

𝜕𝑡
+ 𝛾𝑇0

𝜕

𝜕𝑡
(∇ ∙ �⃑⃑�) − 𝑄]. (11) 

In the above refined Lord and Shulman (LS) theory 𝑁 can be 5 or more. However, the simple LS theory is 

considered to correspond to the value of 𝑁 = 1 as [13] 

𝐾∇2𝜃 = (1 + 𝑡0
𝜕

𝜕𝑡
) [𝜌𝑐𝜈

𝜕𝜃

𝜕𝑡
+ 𝛾𝑇0

𝜕

𝜕𝑡
(∇ ∙ �⃑⃑�) − 𝑄]. (12) 

However, for 𝑡0 = 0 we obtain the classical thermoelasticity theory [38] 

𝐾∇2𝜃 = 𝜌𝑐𝜈
𝜕𝜃

𝜕𝑡
+ 𝛾𝑇0

𝜕

𝜕𝑡
(∇ ∙ �⃑⃑�) − 𝑄. (13) 

The above system of equations describes the nonlocal thermoelasticity model. It can be noticed that the equivalent 

local thermoelasticity model is found by setting 𝜉 = 0 in all equations.  

The charge density is ignored in the following formulation of electromagnetic equations of Maxwell's for an 

electrically conducting, homogenous thermoelastic model: 

∇ × �⃑⃑� = −𝜇0
𝜕ℎ⃑⃑⃑

𝜕𝑡
,   𝐽 = 𝜎0 (�⃑⃑� +

𝜕�⃑⃑⃑�

𝜕𝑡
× �⃑⃑�), 

ℎ⃑⃑ = ∇ × (�⃑⃑� × �⃑⃑⃑�),   ∇ ∙ ℎ⃑⃑ = 0,   �⃑⃑� = 𝜇0�⃑⃑⃑�, 

(14) 

where 𝜇0 donates the magnetic permeability, 𝜎0 donates the electric conductivity, �⃑⃑⃑� donates a magnetic field, 𝐽 donates 

a current density, ℎ⃑⃑ is the generated magnetic field and �⃑⃑� is the generated electric field. 

3. Formulation of the Problem 

The present study concerns the matter of an isotropic and homogeneous thermoelastic thin strip, which is initially 

devoid of any strain or stress but exhibits a uniform temperature distribution 𝑇0. Considering the 𝑥-axis is the axial 

direction of the strip. The axial direction of the strip will be represented by the 𝑥 -axis. The location of the moving 

source of heat 𝑄(𝑥, 𝑡) and its propagation along the x direction is defined by the plane area 𝑥 = 0. The dynamic issue 

associated with a thin, slim strip can be examined as a problem that is one-dimensional in the structure, with all 
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physical variables being dependent entirely on the space variable 𝑥 and the time parameter 𝑡. The strip is affixed at 

both endpoints and exposed to a moving heat source plane that travels along the direction of the 𝑥-axis. 

According to one-dimensional problems, the displacement field is simplified to a certain extent 

𝑢𝑥 = 𝑢(𝑥, 𝑡),   𝑢𝑦 = 𝑢𝑧 = 0. (15) 

A magnetic field acting perpendicular to the strip's axial direction with a constant strength �⃑⃑⃑� ≡ (0, 𝐻𝑥 , 0). The total 

field �⃑⃑� disappears uniformly in the medium interior because there is no applied external electric field. The vector 

elements of electromagnetic induction are: 

𝐵𝑥 = 𝐵𝑧 = 0,   𝐵𝑦 = 𝜇0𝐻𝑥, (16) 

while the Lorentz force �⃑� = 𝐽 × �⃑⃑� caused by utilizing a longitudinal magnetic field �⃑⃑⃑� acting in Equation (7) is stated 
as 

𝐹𝑥 = −𝜎0𝜇0
2𝐻𝑥

2 𝜕𝑢

𝜕𝑡
,   𝐹𝑦 = 𝐹𝑧 = 0. (17) 

Equation (7) also reduces the stress tensor to 

(1 − 𝜉2 𝜕2

𝜕𝑥2) 𝜏 = 𝜎 = (𝜆 + 2𝜇)
𝜕𝑢

𝜕𝑥
− 𝛾𝜃. (18) 

With the aid of Equations (7), (15), and (16), we attain the dynamic equation for the one-dimensional as 

𝜌 (1 − 𝜉2 𝜕2

𝜕𝑥2)
𝜕2𝑢

𝜕𝑡2 = (𝜆 + 2𝜇)
𝜕2𝑢

𝜕𝑥2 − 𝛾
𝜕𝜃

𝜕𝑥
− 𝜎0𝜇0

2𝐻𝑥
2 (1 − 𝜉2 𝜕2

𝜕𝑥2)
𝜕𝑢

𝜕𝑡
. (19) 

The heat conduction equation (11) is now provided by 

𝐾
𝜕2𝜃

𝜕𝑥2 = (1 + ∑
𝜏0

𝑛

𝑛!

𝜕𝑛

𝜕𝑡𝑛
𝑁
𝑛=1 ) [𝜌𝑐𝜈

𝜕𝜃

𝜕𝑡
+ 𝛾𝑇0

𝜕

𝜕𝑡
(

𝜕𝑢

𝜕𝑥
) − 𝑄]. (20) 

The dimensionless quantities presented below are being considered 

{𝑥′, 𝑢′, 𝜉′} = 𝑐0𝜂0{𝑥, 𝑢, 𝜉},   {𝑡′, 𝜏1
′ } = 𝑐0

2𝜂0{𝑡, 𝜏1},   𝜃′ =
𝜃

𝑇0
, 

𝜎′ =
𝜎

𝜆+2𝜇
,   𝜏′ =

𝜏

𝜆+2𝜇
,   𝑄′ =

𝑄

𝐾𝑇0𝑐0
2𝜂0

2,   𝑐0
2 =

𝜆+2𝜇

𝜌
,   𝜂0 =

𝜌𝑐𝜈

𝐾
. 

(21) 

The governing equations, denoted as (18) to (20), can be expressed as follows by removing the primes: 

(1 − 𝜉2 𝜕2

𝜕𝑥2) 𝜏 = 𝜎 =
𝜕𝑢

𝜕𝑥
− 𝜂1𝜃, (22) 

(1 − 𝜉2 𝜕2

𝜕𝑥2)
𝜕2𝑢

𝜕𝑡2 =
𝜕2𝑢

𝜕𝑥2 − 𝜂1
𝜕𝜃

𝜕𝑥
− 𝜖 (1 − 𝜉2 𝜕2

𝜕𝑥2)
𝜕𝑢

𝜕𝑡
, (23) 

𝜕2𝜃

𝜕𝑥2 = (1 + ∑
𝜏0

𝑛

𝑛!

𝜕𝑛

𝜕𝑡𝑛
𝑁
𝑛=1 ) [

𝜕𝜃

𝜕𝑡
+ 𝜂2

𝜕

𝜕𝑡
(

𝜕𝑢

𝜕𝑥
) − 𝑄], (24) 

where 

𝜂1 =  
𝛾𝑇0

𝜌𝑐0
2,   𝜖 =

𝜎0𝜇0
2𝐻𝑥

2

𝜌𝑐0
2𝜂0

,   𝜂2 =  
𝛾

𝐾𝜂0
. (25) 

The above-governing equations start the local formulation if the nonlocal parameter 𝜉 is assigned a value of zero. 

The objective of the present study is to define the temperature, displacement, and nonlocal thermal stress of the slim 

strip described in Equations (22)–(24). 

4. Initial and Boundary Conditions 

The homogeneous initial conditions are shown as 

𝜃(𝑥, 0) =
𝜕𝑛𝜃

𝜕𝑡𝑛|
𝑡=0

= 0 = 𝑢(𝑥, 0) =
𝜕𝑛𝑢

𝜕𝑡𝑛|
𝑡=0

,   𝑛 = 1, … , 𝑁. (26) 

Also, assuming that both endpoints of the strip are fixed i.e. 
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𝑢(0, 𝑡) = 𝑢(𝐿, 𝑡) = 0, (27) 

where 𝐿 is the dimensionless length of the strip. 

Also, we consider the two ends to be heat insulation, the boundary should satisfy the following relation 

𝑢(0, 𝑡) = 𝑢(𝐿, 𝑡) = 0, (28) 

𝜕𝜃

𝜕𝑥
= 0   on   𝑥 = 0, 𝐿. (29) 

The strip is under a moving source of heat with fixed intensity 𝑄0 that constantly releases energy while traveling 

with a fixed speed 𝜗 along the positive 𝑥-axis. The next dimensionless structure is thought to represent this moving 

source of heat [26]. 

𝑄 = 𝑄0𝛿(𝑥 − 𝜗𝑡)   on   𝑥 = 0, 𝐿. (30) 

5. Resolution of the Laplace Transform Domain Issue 

The utilization of the Laplace transform method can result in the finding of the solution in a closed form for the 

governing and constitutive equations. Applying the following Laplace transform 

𝑓̅(𝑥, s) = ∫ 𝑓(𝑥, 𝑡)e−𝑠𝑡d𝑡
∞

0
, (31) 

to Equations (22)–(24) on both sides and utilizing the homogeneous initial conditions presented in Equation (24), the 
field equations in the Laplace transform domain can be derived as follows 

(1 − 𝜉2 d2

d𝑥2) 𝜏̅ = 𝜎 =
d𝑢

d𝑥
− 𝜂1�̅�, (32) 

(
d2

d𝑥2 − 𝜂3) �̅� − 𝜂4
d�̅�

d𝑥
= 0, (33) 

(
d2

d𝑥2 − 𝜂5) �̅� − 𝜂6
d𝑢

d𝑥
= −𝑄1e−(𝑠/𝜗)𝑥, (34) 

where 

𝑄1 =
𝜛𝑄0

𝜗
,   𝜂3 =

𝑠(𝜖+𝑠)

𝜉2𝑠(𝜖+𝑠)+1
,   𝜂4 =

𝜂1

𝜉2𝑠(𝜖+𝑠)+1
, 

𝜂5 =  𝜛𝑠,   𝜂6 = 𝜂2𝜂5,   𝜛 = 1 + ∑
𝑡0

𝑛

𝑛!
𝑠𝑛𝑁

𝑛=1 . 

(35) 

Elimination �̅� or �̅� from Equations (33) and (34), one obtains: 

(
d4

d𝑥4 − 2𝑐1
d2

d𝑥2 + 𝑐2) �̅�(𝑥) = 𝑐3e−(𝑠/𝜗)𝑥, (36) 

(
d4

d𝑥4 − 2𝑐1
d2

d𝑥2 + 𝑐2) �̅�(𝑥) = 𝑐4e−(𝑠/𝜗)𝑥, (37) 

where the coefficients 𝑐1, 𝑐2, 𝑐3 and 𝑐4 are given by 

𝑐1 =
1

2
(𝜂3 + 𝜂5 + 𝜂4𝜂6),   𝑐2 = 𝜂3𝜂5,   𝑐3 =

𝜂4𝑄1𝑠

𝜗
,   𝑐4 = (𝜂3 −

𝑠2

𝜗2) 𝑄1. (38) 

The solutions of Equations (36) and (37) can be represented as 

�̅�(𝑥) = ∑ (𝐴𝑛e𝜁𝑛𝑥 + 𝐵𝑛e−𝜁𝑛𝑥) + 𝑐3̅e−𝜁3𝑥2
𝑛=1 , (39) 

�̅�(𝑥) = ∑ 𝛽𝑛(𝐴𝑛e𝜁𝑛𝑥 − 𝐵𝑛e−𝜁𝑛𝑥) − 𝛽3𝑐3̅e−𝜁3𝑥2
𝑛=1 , (40) 

where 𝐴𝑛 and 𝐵𝑛, (𝑛 = 1,2) are two integral constants subject to 𝑠 to be obtained from the boundary conditions, while 
𝛽𝑗 and 𝑐3̅ are represented as 

𝛽𝑗 =
𝜁𝑗

2−𝜂3

𝜁𝑗𝜂4
,   𝑐3̅ =

𝑐3

𝜁3
4−2𝑐1𝜁3

2+𝑐2
,   𝜁3 =

𝑠

𝜗
,   𝑗 = 1,2,3. (41) 
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In Equations (39) and (40), 𝜁1 and 𝜁2 are the roots of the individual equation 

𝜁4 − 2𝑐1𝜁2 + 𝑐2 = 0, (42) 

and they are given by 

𝜁1
2,𝜁2

2 = 𝑐1 ∓ √𝑐1
2 − 𝑐2. (43) 

The component of stress  𝜏̅ may be calculated using Equations (39) and (40) in Equation (32) as 

(1 − 𝜉2 d2

d𝑥2) 𝜏̅ = 𝜎 = ∑ �̅�𝑛(𝐴𝑛e𝜁𝑛𝑥 − 𝐵𝑛e−𝜁𝑛𝑥) − �̅�3𝑐3̅e−𝜁3𝑥2
𝑛=1 , (44) 

where 

�̅�𝑗 = 𝜁𝑗 − 𝛽𝑗𝜂1,   𝑗 = 1,2,3. (45) 

The classical local stress 𝜎 in Equation (44) is easily given while the nonlocal stress 𝜏̅ is given by solving Equation 

(44) in the form 

𝜏̅ = ∑ �̂�𝑛(𝐴𝑛e𝜁𝑛𝑥 − 𝐵𝑛e−𝜁𝑛𝑥)2
𝑛=1 − �̂�3𝑐3̅e−𝜁3𝑥 + 𝐴4e𝜁4𝑥 + 𝐵4e−𝜁4𝑥, (46) 

where 𝐴4 and 𝐵4 are additional integral constants and 

�̂�𝑗 =
�̅�𝑗𝜁4

2

𝜁4
2−𝜁𝑗

2,   𝜁4 =
1

𝜉
,   𝑗 = 1,2,3. (47) 

After utilizing Laplace transform in Equations (28) and (29), the boundary conditions take the forms 

�̅� =
d�̅�

d𝑥
= 0   at   �̅� = 0,1,   �̅� = 𝑥/𝐿. (48) 

Substituting Equations (39) and (40) into the above boundary conditions, one attains 

[

1        1
e𝜁1        e−𝜁1

1        1
e𝜁2        e−𝜁2

𝛽1𝜁1 𝛽1𝜁1

𝛽1𝜁1e𝜁1 𝛽1𝜁1e−𝜁1

𝛽2𝜁2 𝛽2𝜁2

𝛽2𝜁2e𝜁2 𝛽2𝜁2e−𝜁2

] {

𝐴1

𝐵1

𝐴2

𝐵2

} = −𝑐3̅ {

1
e−𝜁3

𝛽3𝜁3

𝛽3𝜁3e−𝜁3

}. (49) 

After solving the above system we get the unknown parameters 𝐴𝑛, 𝐵𝑛 in the form 

𝐴1 =
𝑐3̅(𝛽3𝜁3−𝛽2𝜁2)(e−𝜁1−e−𝜁3)

(𝛽1𝜁1−𝛽2𝜁2)(e𝜁1−e−𝜁1)
,   𝐵1 = −

𝑐3̅(𝛽3𝜁3−𝛽2𝜁2)(e𝜁1−e−𝜁3)

(𝛽1𝜁1−𝛽2𝜁2)(e𝜁1−e−𝜁1)
, 

𝐴2 =
𝑐3̅(𝛽1𝜁1−𝛽3𝜁3)(e−𝜁2−e−𝜁3)

(𝛽1𝜁1−𝛽2𝜁2)(e𝜁2−e−𝜁2)
,   𝐵2 = −

𝑐3̅(𝛽1𝜁1−𝛽3𝜁3)(e𝜁2−e−𝜁3)

(𝛽1𝜁1−𝛽2𝜁2)(e𝜁2−e−𝜁2)
. 

(50) 

The nonlocal impact has recently been recognized as an important consideration that could not be neglected when 

determining stress. So, to get the complete form of the nonlocal stress 𝜏̅ we need to add two boundary conditions in 

the form 

𝜏̅ = 0   at   �̅� = 0, 1, (51) 

and using Equation (46) to get 

𝐴4 =
1

e𝜁4−e−𝜁4
{∑ �̂�𝑛[𝐴𝑛(e−𝜁4 − e𝜁𝑛) − 𝐵𝑛(e−𝜁4 − e−𝜁𝑛)]2

𝑛=1 − �̂�3𝑐3̅(e−𝜁4 − e−𝜁3)}, 

𝐵4 = −
1

e𝜁4−e−𝜁4
{∑ �̂�𝑛[𝐴𝑛(e𝜁4 − e𝜁𝑛) − 𝐵𝑛(e𝜁4 − e−𝜁𝑛)]2

𝑛=1 − �̂�3𝑐3̅(e𝜁4 − e−𝜁3)}. 
(52) 

To determine the studied fields (𝜃∗, 𝑢∗, 𝑒∗, 𝜎∗, and 𝜏∗) in the physical domain, the numerical findings are obtained 

using the Riemann-sum approximation approach. One can read about these techniques in detail in Honig and Hirdes 

[39]. 

6. Local thermoelasticity theory 

To obtain the local expression, set the nonlocal parameter 𝜉 to zero in the governing equations given above. The 

purpose of the current investigation is to examine the thin strip defined by Equations (22)-(24) in terms of 

displacement, temperature, and nonlocal thermal stress along its axial direction. 
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The dimensionless governing equations for the coupled and refined thermoelasticity theories of the thin slim strip 

may be finally written as 

𝜏 = 𝜎 =
𝜕𝑢

𝜕𝑥
− 𝜂1𝜃, (53) 

𝜕2𝑢

𝜕𝑡2 =
𝜕2𝑢

𝜕𝑥2 − 𝜂1
𝜕𝜃

𝜕𝑥
− 𝜖

𝜕𝑢

𝜕𝑡
, (54) 

𝜕2𝜃

𝜕𝑥2 = (1 + ∑
𝜏0

𝑛

𝑛!

𝜕𝑛

𝜕𝑡𝑛
𝑁
𝑛=1 ) [

𝜕𝜃

𝜕𝑡
+ 𝜂2

𝜕

𝜕𝑡
(

𝜕𝑢

𝜕𝑥
) − 𝑄], (55) 

or after using Laplace transform 

𝜏̅ = 𝜎 =
d𝑢

d𝑥
− 𝜂1�̅�, (56) 

(
d2

d𝑥2 − 𝜂7) �̅� − 𝜂1
d�̅�

d𝑥
= 0, (57) 

(
d2

d𝑥2 − 𝜂5) �̅� − 𝜂6
d𝑢

d𝑥
= −𝑄1e−(𝑠/𝜗)𝑥, (58) 

where 

𝜂7 = 𝑠(𝜖 + 𝑠). (59) 

Elimination �̅� or �̅� from Equations (54) and (55), one obtains: 

(
d4

d𝑥4 − 2𝒸1
d2

d𝑥2 + 𝒸2) �̅�(𝑥) = 𝒸3e−(𝑠/𝜗)𝑥, (60) 

(
d4

d𝑥4 − 2𝒸1
d2

d𝑥2 + 𝒸2) �̅�(𝑥) = 𝒸4e−(𝑠/𝜗)𝑥, (61) 

where the coefficients 𝒸1, 𝒸2, 𝒸3 and 𝒸4 are given by 

𝒸1 =
1

2
(𝜂5 + 𝜂7 + 𝜂1𝜂6),   𝒸2 = 𝜂5𝜂7,   𝒸3 =

𝜂1𝑄1𝑠

𝜗
,   𝒸4 = (𝜂7 −

𝑠2

𝜗2) 𝑄1. (62) 

The solutions of Equations (60) and (61) can be represented as 

�̅�(𝑥) = ∑ (𝒜𝑛e𝜅𝑛𝑥 + ℬ𝑛e−𝜅𝑛𝑥) + 𝒸3̅e−𝜅3𝑥2
𝑛=1 , (63) 

�̅�(𝑥) = ∑ 𝛼𝑛(𝒜𝑛e𝜅𝑛𝑥 − ℬ𝑛e−𝜅𝑛𝑥) − 𝛼3𝒸3̅e−𝜅3𝑥2
𝑛=1 , (64) 

where 𝒜𝑛 and ℬ𝑛, (𝑛 = 1,2) are two integral constants subject to 𝑠 to be obtained by the boundary conditions, while 
𝛼𝑗 and 𝒸3̅ are represented as 

𝛼𝑗 =
𝜅𝑗

2−𝜂7

𝜅𝑗𝜂1
,   𝒸3̅ =

𝒸3

𝜅3
4−2𝒸1𝜅3

2+𝒸2
,   𝜅3 =

𝑠

𝜗
,   𝑗 = 1,2,3. (65) 

In Equations (63) and (64), 𝜅1 and 𝜅2 are the roots of the individual equation 

𝜅4 − 2𝒸1𝜅2 + 𝒸2 = 0, (66) 

and they are provided by 

𝜅1
2, 𝜅2

2 = 𝒸1 ∓ √𝒸1
2 − 𝒸2. (67) 

The component of stress  𝜏̅ may be calculated using Equations (63) and (64) in Equation (56) as 
 

𝜏̅ = 𝜎 = ∑ �̅�𝑛(𝒜𝑛e𝜅𝑛𝑥 − ℬ𝑛e−𝜅𝑛𝑥) − �̅�3𝒸3̅e−𝜅3𝑥2
𝑛=1 , (68) 

where 

�̅�𝑗 = 𝜅𝑗 − 𝛼𝑗𝜂1,   𝑗 = 1,2,3. (69) 

Once again, one can easily get the unknown parameters 𝒜𝑛, ℬ𝑛 in the form 
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𝒜1 =
𝒸3̅(𝛼2𝜅2−𝛼3𝜅3)(e−𝜅1−e−𝜅3)

(𝛼2𝜅2−𝛼1𝜅1)(e𝜅1−e−𝜅1)
,   ℬ1 = −

𝒸3̅(𝛼2𝜅2−𝛼3𝜅3)(e𝜅1−e−𝜅3)

(𝛼2𝜅2−𝛼1𝜅1)(e𝜅1−e−𝜅1)
, 

𝒜2 =
𝒸3̅(𝛼1𝜅1−𝛼3𝜅3)(e−𝜅2−e−𝜅3)

(𝛼1𝜅1−𝛼2𝜅2)(e𝜅2−e−𝜅2)
,   ℬ2 = −

𝒸3̅(𝛼1𝜅1−𝛼3𝜅3)(e𝜅2−e−𝜅3)

(𝛼1𝜅1−𝛼2𝜅2)(e𝜅2−e−𝜅2)
. 

(70) 

7. Numerical Results and Validations 

This section shows numerical findings that examine the impact of several parameters on the thermoelastic response 

of the thin, slim strip. For numerical computations, the material of the thin slim strip is identified as copper. The 

fundamental material parameters that must be specified are provided [26]. 

𝐾 = 386 (W m−1K−1),   𝜆 = 7.76 × 1010 (N m−2),   𝜇 = 3.86 × 1010 (N m−2), 

𝜌 = 8954 (Kg m−3),   𝑇0 = 293 (K),   𝑐𝜈 = 383.1 (J kg−1 K−1),   𝛼𝑡 = 1.78 × 10−5(K−1). 
 

In all figures, the following values are fixed (except otherwise stated), 𝜗 = 2, 𝜉 = 0.1, 𝑡 = 0.5. The dimensionless 

length of the thin slim strip is 𝐿 = 0.8. The relaxation time of the simple and refined LS theories is fixed as 𝑡0 = 0.02 

and 𝑄0 = 10. We return to the old situation (local theory of elasticity) as the nonlocal parameter is vanishing (𝜉 = 0). 

In Equation (25), 𝜖 is referred to as the magneto thermoelasticity parameter since it is given in terms of the magnetic 

field intensity 𝐻𝑥, the magnetic permeability 𝜇0, and the electric conductivity 𝜎0. It may take values ranging from 0 

to 10. The value 𝜖 = 0 represents the case without a magnetic field. 
 

   

Fig 1. Nonlocal temperature 𝜃 distributions of the slim strip for different times 𝑡 according to all theories. 

In what follows we will describe and compare the analytical outcomes found in the previous sections via some 

numerical examples which demonstrate the distributions of temperature 𝜃 (≡ 𝜃∗), displacement 𝑢 (≡ 103𝑢∗), 

dilatation 𝑒 (≡ 103𝑒∗), and different stresses 𝜎 (≡ 102𝜎∗) and 𝜏 (≡ 102𝜏∗). The results due to the classical theory 

with the simple and refined generalized LS theories are illustrated. In addition, all variables will be presented in both 

nonlocal and local cases. 

7.1 Effect of the Time Instant 

In this case, some examples are introduced to show the influence of time instant 𝑡 on the field variables for fixed 

values of the moving heat source velocity 𝜗 = 2, magneto thermoelasticity parameter 𝜖 = 5, and the nonlocal 

parameter 𝜉 = 0.1. For the comparison of the outcomes, the temperature, displacement, dilatation, and stress of the 

strip are shown in Figures 1-8. 

In Figure 1, the nonlocal distributions of temperature 𝜃 of the slim strip for different times 𝑡 are presented according 

to all theories. The change in time instance is studied. The temperature 𝜃 is very sensitive to the change in 𝑡. The 

amplitudes of the CTE temperature waves are the smallest ones. The amplitude of the temperature wave remains the 

highest because of the refined theory for 𝑡 = 0.42 and 𝑡 = 0.48 and smaller than the simple theory for 𝑡 = 0.54. It is 

interesting here to see that the temperatures due to the nonlocal thermoelasticity theory are the same as those due to 

the local thermoelasticity theory. That is because the nonlocal term has not affected the temperature. 

Figure 2 exhibits the nonlocal distributions of displacement 𝑢 of the slim strip for different times 𝑡 according to all 

theories. However, Figure 3 presents the local distributions of displacement 𝑢 of the slim strip. The local and nonlocal 
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displacements decrease as the dimensionless time increases. Also, the classical theory yields the greatest 

displacements while the refined theory yields, in most cases, the smallest displacements. It is apparent that the 

displacements are extremely sensitive to the variation of time, especially, for the local case.  
 

   

Fig 2. Nonlocal displacement 𝑢 distributions of the slim strip for different times 𝑡 according to all theories. 

 

   

Fig 3. Local displacement 𝑢 distributions of the slim strip for different times 𝑡 according to all theories. 

   

Fig 4. Nonlocal dilatation 𝑒 distributions of the slim strip for different times 𝑡 according to all theories. 
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Fig 5. Local dilatation 𝑒 distributions of the slim strip for different times 𝑡 according to all theories. 

   

Fig 6. Nonlocal stress 𝜎 distributions of the slim strip for different times 𝑡 according to all theories. 

Figures 4 and 5 show the nonlocal and local distributions of dilatation 𝑒 of the slim strip for different times 𝑡 

according to all theories. Dilatation decreases across the 𝑥-axis of the slim strip. Also, the dilatation decreases as 𝑡 

increases. The classical theory yields a dilatation wave with the largest amplitude in the nonlocal case and with the 

smallest amplitude in the local case. 

Figures 6 and 7 show the nonlocal and local distributions of stress 𝜎 of the slim strip for different times 𝑡 according 

to all theories. The local stress may be similar to the nonlocal one in all cases. In both cases, the stress wave caused 

by the refined theory has the largest amplitude for 𝑡 = 0.42 and 𝑡 = 0.48. However, the stress wave caused by the 

simple theory has the largest amplitude for 𝑡 = 0.54.  
 

   

Fig 7. Local stress 𝜎 distributions of the slim strip for different times 𝑡 according to all theories. 
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Fig 8. Nonlocal stress 𝜏 distributions of the slim strip for different times 𝑡 according to all theories. 

   

Fig 9. Nonlocal temperature 𝜃 distributions of the slim strip for different velocities 𝜗 according to all theories. 

Finally, Figure 8 shows the pure nonlocal stress 𝜏 distributions of the slim strip for different times 𝑡 according to 

all theories. It is to be mentioned that the pure nonlocal stress 𝜏 vanishes at the ends of the slim strip according to the 

boundary conditions. 𝜏 is sensitive to the variation of 𝑡. 

7.2 Effect of Moving Heat Source Velocity Parameter 

The second case considered here is to examine the dimensionless temperature, displacement, dilatation, and stress 

change with different values of the velocity of the moving source of heat 𝜗 as the other parameters are considered 

constant (𝑡 = 0.5, 𝜖 = 5, and 𝜉 = 0.1). The results for this case are illustrated in Figures 9-15. In this study, we will 

investigate the assumption that the pattern of changes that occur across all field variables for the velocity parameters 

of moving heat sources is considerably different. 

In Figure 9, the nonlocal distributions of temperature 𝜃 of the slim strip for different moving heat source velocities 
𝜗 are presented according to all theories. The change in 𝜗 is studied, and 𝜃 is very sensitive to the variation 𝜗. The 
amplitudes of the CTE temperature waves are the smallest ones. The amplitude of the temperature wave caused by 
the simple theory is still the largest one in most positions. In general, the temperature 𝜃 reduces as the velocity of 
moving heat source 𝜗 rises. Once again, it is interesting here to see that the temperatures due to the nonlocal 
thermoelasticity theory are the same as those due to the local thermoelasticity theory. 

Figure 10 shows the nonlocal distributions of displacement 𝑢 (�̂� = 10𝑢, �̌� = 100𝑢) of the slim strip for different 
moving heat source velocities 𝜗 according to all theories. However, Figure 11 illustrates the corresponding local 
distributions of displacement 𝑢 of the slim strip. The displacement satisfies the boundary conditions at the endpoints 
of the slim strip and gets some negative values in different positions. The local and nonlocal displacements decrease 
as the velocity of a moving heat source 𝜗 rises.  
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Fig 10. Nonlocal displacement 𝑢 distributions of the slim strip for different velocities 𝜗 according to all theories. 

   
Fig 11. Local displacement 𝑢 distributions of the slim strip for different velocities 𝜗 according to all theories. 

 

   
Fig 12. Nonlocal dilatation 𝑒 distributions of the slim strip for different velocities 𝜗 according to all theories. 

Also, the classical theory yields the greatest displacements while the refined theory yields, in most cases, the smallest 
displacements. The displacements are extremely sensitive to the change of the moving heat source velocity 𝜗, 
especially in the local case. 

Figures 12 and 13 show the nonlocal and local distributions of dilatation 𝑒 of the slim strip for different moving 

heat source velocities 𝜗 according to all theories. The amplitudes of dilatation waves decrease across the 𝑥-axis of the 

slim strip as the moving heat source velocity 𝜗 rises. The amplitude of the dilatation wave caused by classical theory 

may be the largest one when 𝜗 = 1.5 and 𝜗 = 2.5. However, the amplitude of the dilatation wave caused by the LS 

(s) theory is the largest one when 𝜗 = 3.5. The dilatations are more sensitive to the variation of the moving heat source 

velocity 𝜗 when the local case is considered. 
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Fig 13. Local dilatation 𝑒 distributions of the slim strip for different velocities 𝜗 according to all theories. 

 

   

Fig 14. Nonlocal stress 𝜎 distributions of the slim strip for different velocities 𝜗 according to all theories. 

Figures 14 and 15 show the nonlocal and local distributions of stress 𝜎 of the slim strip for different moving heat 

source velocities 𝜗 according to all theories. The local stress may be similar to the nonlocal one in all cases. In both 

cases, the stress wave is extremely sensitive to the change of the moving heat source velocity 𝜗. The stresses decrease 

with the increase in the moving heat source velocities 𝜗. 
 

   

Fig 15. Local stress 𝜎 distributions of the slim strip for different velocities 𝜗 according to all theories. 
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Fig 16. Nonlocal stress 𝜏 distributions of the slim strip for different velocities 𝜗 according to all theories. 

   

Fig 17. Nonlocal temperature 𝜃 distributions of the slim strip for different magneto thermoelastic parameters 𝜖 according to all theories. 

In Figure 16, the pure nonlocal stress 𝜏 distributions of the slim strip are presented for different moving heat source 

velocities 𝜗 according to all theories. It is to be mentioned that the pure nonlocal stress 𝜏 vanishes at the ends of the 

slim strip according to the boundary conditions. The absolute value of 𝜏 decreases as 𝜗 increases and 𝜏 is sensitive to 

the change of different moving heat source velocities 𝜗 between the ends of the slim strip. 

7.3 Influence of the Applied Magnetic Field 

In the last case, we illustrate how the quantities of the field change with the different values of the applied magneto 

thermoelastic parameter 𝜖 (𝜖 = 0, 4, 8) with constants 𝜗 = 2, 𝑡 = 0.5, and 𝜉 = 0.1.  Results of all variables are 

obtained and presented graphically in Figs17-24.  

Figure 17 exhibits the nonlocal distributions of temperature 𝜃 of the slim strip for different magneto thermoelastic 

parameters 𝜖 are presented according to all theories. The temperature 𝜃 has low sensitivity to the variations magneto 

thermoelastic parameters 𝜖. The amplitudes of the CTE temperature waves are the smallest ones. It is interesting here 

to see that the temperatures due to the nonlocal thermoelasticity theory are the same as those due to the local 

thermoelasticity theory. 

Figure 18 shows the nonlocal distributions of displacement 𝑢 of the slim strip for different magneto thermoelastic 

parameters 𝜖 according to all theories. However, Figure 19 shows the corresponding local distributions of 

displacement 𝑢 of the slim strip. The displacement satisfies the boundary conditions at the endpoints of the slim strip. 

The displacements are extremely sensitive to the variation in the magneto thermoelastic parameters 𝜖, mainly for the 

local case. The local and nonlocal displacements decrease as the magneto thermoelastic parameter 𝜖 increases. Also, 

the classical theory yields the greatest displacements while the refined theory yields, in most cases, the smallest 

displacements. 
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Fig 18. Nonlocal displacement 𝑢 distributions of the slim strip for different magneto thermoelastic parameters 𝜖 according to all theories. 

 

   
Fig 19. Local displacement 𝑢 distributions of the slim strip for different magneto thermoelastic parameters 𝜖 according to all theories. 

 

   
Fig 20. Nonlocal dilatation 𝑒 distributions of the slim strip for different magneto thermoelastic parameters 𝜖 according to all theories. 

 

Figure 20 shows the nonlocal distributions of dilatation 𝑒 of the slim strip for different magneto thermoelastic 

parameters 𝜖 according to all theories. However, Figure 21 shows the corresponding local distributions of dilatation 

𝑒 of the slim strip. The dilatations are very sensitive to the variation in the magneto thermoelastic parameters 𝜖, mainly 

for the local case. The local and nonlocal dilatations decrease as the magneto thermoelastic parameter 𝜖 increases. The 

amplitudes of dilatation waves decrease along the 𝑥-axis of the slim strip as the magneto thermoelastic parameter 𝜖 

increases. The amplitude of the dilatation wave caused by classical theory may be the largest one in the nonlocal case 

and the smallest one in the local case. 
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Fig 21. Local dilatation 𝑒 distributions of the slim strip for different magneto thermoelastic parameters 𝜖 according to all theories. 

 

   
Fig 22. Nonlocal stress 𝜎 distributions of the slim strip for different magneto thermoelastic parameters 𝜖 according to all theories. 

Figures 22 and 23 show the nonlocal and local distributions of stress 𝜎 of the slim strip for different magneto 

thermoelastic parameters 𝜖 according to all theories. The local stress may be similar to the nonlocal one in all cases. 

In both cases, the stress wave is extremely sensitive to the change of the magneto thermoelastic parameter 𝜖. The 

stresses have very slow variation with the change in magneto thermoelastic parameters 𝜖. 
 

   
Fig 23. Local stress 𝜎 distributions of the slim strip for different magneto thermoelastic parameters 𝜖 according to all theories. 
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Fig 24. Nonlocal stress 𝜏 distributions of the slim strip for different magneto thermoelastic parameters 𝜖 according to all theories. 

 

Figure 24 shows the pure nonlocal stress 𝜏 distributions of the slim strip for different magneto thermoelastic 

parameters 𝜖 according to all theories. The pure nonlocal stress 𝜏 vanishes at the ends of the slim strip according to 

the boundary conditions. The nonlocal stress 𝜏 has low sensitivity to the variations of magneto thermoelastic 

parameters 𝜖. 

8. Conclusions 

In this work, the dynamic effect of an isotropic thin slim strip exposed to a magnetic field and moving heat source 

based on the nonlocal thermoelasticity theory is investigated. The solution is obtained with the aid of Laplace’s 

transformation method and its inversion. The effect of nonlocal parameters, moving heat source velocity, and exposed 

magnetic field on the transient responses of the thin slim strip is discussed. Based on the numerical findings, the 

following deductions can be drawn: 

• The nonlocal parameter 𝜉 has major effects on displacement, dilatation, and nonlocal stress fields, however, 
it has little effect on the temperature and thermal stress. The temperature may remain unchanged with the 
changes in the nonlocal parameter. 

• The finite speed propagation phenomenon is shown in all figures by comparing the classical thermoelasticity 
theory with the generalized (simple and refined) Lord and Sulmann theory. 

• The influence of the applied magnetic field 𝜖 on the studied quantities is very significant. 

• The value of moving heat source velocity 𝜗 has a fundamental part in changing the value of the physical 
quantities distribution. It has a huge impact on displacement, dilatation, temperature, and distributions of 
local and nonlocal stress. 

• The dimensionless time parameter 𝑡 causes significant changes in all the studied quantities. 
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