Time Dependent Harmonic Oscillator via OM-HPM

Document Type : Research Paper

Authors

1 Department of Applied Mathematics, Palestine Technical University- Kadoorie, Tulkarm P 305, Palestine

2 Department of Applied Mathematics, Vidyasagar University, Midnapure, West Bengal-721102, India

3 Department of Mathematics and Computer Science, Transilvania University of Brasov, Romania

4 Department of Physics, Palestine Technical University- Kadoorie, Tulkarm P 305, Palestine

Abstract

In this study, we present a semi-analytical technique known as the Optimal and Modified Homotopy Perturbation Method (OM-HPM) for solving nonlinear oscillators with time-dependent mass. The work extends existing approaches, including the standard Homotopy Perturbation Method (HPM), by introducing an auxiliary linear operator that minimizes residual error and enhances the method’s efficiency for both singular and non-singular nonlinear ordinary differential equations. The model of a harmonic oscillator with exponentially decaying mass is investigated using this method, and its equation of motion is derived using the Lagrangian formulation. The OM-HPM technique is applied to solve the resulting second-order nonlinear differential equation, and solutions are presented in series form. The method significantly reduces computational cost through the use of Newton-Cotes quadrature. Analytical illustrations demonstrate that the effectiveness of OM-HPM in solving complex nonlinear oscillatory systems.

Keywords

Main Subjects

[1]    G. R. Fowles, 2005, Analytical Mechanics, Thompson Brooks/Cole, Belmont, CA
[2]    H. Goldstein, 1950, Classical mechanic, Addison-wesley, United States of America
[3]    L. N. Hand, 1998, Analytical Mechanics, Cambridge University Press, United States of America
[4]    N. J. A. Balanov, D. Postnov, O. Sosnovtseva, 2008, Synchronization: From Simple to Complex, Springer, Berlin
[5]    N. Minorsky, 1947, Introduction to Non-Linear Mechanics., Edwards Brothers, United States of America
[6]    S. H. Strogatz, 1994, Nonlinear dynamics and chaos, Westview Press, US Perseus Books Publishing, LLC
[7]    A. R. S. A. Kimiaeifar, G.H. Bagheri, M Rahimpour, D.G. Domairry, Analytical solution for van der pol–duffing oscillators, Chaos, Solitons & Fractals, Vol. 42, No. 5, pp. 2660-2666, 2009. 
[8]    S. J. Liao, An Optimal Homotopy analysis approach for strongly nonlinear differential equations, Communications in Nonlinear Science and Numerical Simulation, Vol. 15, pp. 2003-2016, 2010. 
[9]    G. J. A. Chen, Periodic solution of the duffing-van der pol oscillator by homotopy perturbation method., International Journal of Computer Mathematics, Vol. 87, No. 12, pp. 2688–2696, 2010. 
[10]    B. R. T. Roy, J. Asad, D. K. Maiti, P. Mallick, R. Jarrar Nonlinear oscillators dynamics using optimal and modified homotopy perturbation method, Journal of Low Frequency Noise Vibration and Active Control, Vol. 43, No. 4, pp. 1469-1480, 2024. 
[11]    D. K. M. T. Roy, General approach on the best fitted linear operator and basis function for homotopy methods and application to strongly nonlinear oscillators, Mathematics and Computers in Simulation Vol. 220, pp. 44-64, 2024. 
[12]    P. V. M. Kumar, Numerical Simulation of Van der Pol Equation Using Multiple Scales Modified Lindstedt-Poincare Method, Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, Vol. 91, No. 1, pp. 55-65, 2021. 
[13]    A. R. V. Gh. A. Cordshooli, Solutions of duffing-van der pol equation using decomposition method, Advanced Studies in Theoretical Physics, Vol. 5, pp. 121-129, 2011. 
[14]    S. M. Z. Azimzadeh A. R. Vahidi, Restarted Adomian Decomposition Method for Solving Duffing-van der Pol Equation, Applied Mathematical Sciences, Vol. 10, pp. 499 – 507, 2012. 
[15]    A. B. S.S Ganji, S. Karimpour, G. Domairry, Motion of a rigid rod rocking back and forth and cubic-quintic duffing oscillators, Journal of theoretical and applied mechanics, Vol. 50, No. 1, pp. 215-229, 2012. 
[16]    J. H. He, Homotopy perturbation technique, Computer Methods in Applied Mechanics and Engineering, Vol. 178, No. 3, pp. 257-262, 1999. 
[17]    J. H. H. Y. Wu, Homotopy perturbation method for nonlinear oscillators with coordinate dependent mass, Results in Physics, Vol. 10, pp. 270-271, 2018. 
[18]    M. S. A. Y. Nawaz, M. Bibi, M. Naz,  R. Fayyaz, An effective modification of he’s variational approach to a nonlinear oscillator, Journal of Low Frequency Noise, Vibration and Active Control, Vol. 38, No. 3-4, pp. 1013–1022, 2019. 
[19]    M. G. D.D. Ganji, S. Soleimani, M. Esmaeilpour, Solution of nonlinear cubic-quintic duffing oscillators using he’s energy balance method, Journal of Zhejiang University-Science A, Vol. 10, No. 9, pp. 1263-1268, 2009. 
[20]    Q. Y. J.H. He, C.H. He,  Y. Khan, A simple frequency formulation for the tangent oscillator, Axioms, Vol. 10, No. 4, pp. 320, 2021. 
[21]    P. O. M.A. Yunbunga, Parameterized homotopy perturbation method, Nonlinear Science Letters A, Vol. 8, pp. 240–243, 2017. 
[22]    K. S. Kolbig, The complete Bell polynomials for certain arguments in terms of stirling numbers of the first kind, Applied Mathematics and Computation, Vol. 51, pp. 113-116, 1994. 
[23]    M. Y. K. Yabushita, K. Tsuboi, An analytic solution of projective motion with the quadratic resistance law using homotopy analysis method, Journal of Physics A: Mathematical and Theoretical Vol. 40, pp. 8403-8416, 2007. 
[24]    D. K. M. T. Roy, An optimal and modified homotopy perturbation method for strongly nonlinear differential equations, Nonlinear Dynamics, Vol. 111, pp. 15215-15231, 2023. 
Volume 56, Issue 1
January 2025
Pages 264-275
  • Receive Date: 28 November 2024
  • Revise Date: 01 December 2024
  • Accept Date: 02 December 2024