[1] G. R. Fowles, 2005, Analytical Mechanics, Thompson Brooks/Cole, Belmont, CA
[2] H. Goldstein, 1950, Classical mechanic, Addison-wesley, United States of America
[3] L. N. Hand, 1998, Analytical Mechanics, Cambridge University Press, United States of America
[4] N. J. A. Balanov, D. Postnov, O. Sosnovtseva, 2008, Synchronization: From Simple to Complex, Springer, Berlin
[5] N. Minorsky, 1947, Introduction to Non-Linear Mechanics., Edwards Brothers, United States of America
[6] S. H. Strogatz, 1994, Nonlinear dynamics and chaos, Westview Press, US Perseus Books Publishing, LLC
[7] A. R. S. A. Kimiaeifar, G.H. Bagheri, M Rahimpour, D.G. Domairry, Analytical solution for van der pol–duffing oscillators, Chaos, Solitons & Fractals, Vol. 42, No. 5, pp. 2660-2666, 2009.
[8] S. J. Liao, An Optimal Homotopy analysis approach for strongly nonlinear differential equations, Communications in Nonlinear Science and Numerical Simulation, Vol. 15, pp. 2003-2016, 2010.
[9] G. J. A. Chen, Periodic solution of the duffing-van der pol oscillator by homotopy perturbation method., International Journal of Computer Mathematics, Vol. 87, No. 12, pp. 2688–2696, 2010.
[10] B. R. T. Roy, J. Asad, D. K. Maiti, P. Mallick, R. Jarrar Nonlinear oscillators dynamics using optimal and modified homotopy perturbation method, Journal of Low Frequency Noise Vibration and Active Control, Vol. 43, No. 4, pp. 1469-1480, 2024.
[11] D. K. M. T. Roy, General approach on the best fitted linear operator and basis function for homotopy methods and application to strongly nonlinear oscillators, Mathematics and Computers in Simulation Vol. 220, pp. 44-64, 2024.
[12] P. V. M. Kumar, Numerical Simulation of Van der Pol Equation Using Multiple Scales Modified Lindstedt-Poincare Method, Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, Vol. 91, No. 1, pp. 55-65, 2021.
[13] A. R. V. Gh. A. Cordshooli, Solutions of duffing-van der pol equation using decomposition method, Advanced Studies in Theoretical Physics, Vol. 5, pp. 121-129, 2011.
[14] S. M. Z. Azimzadeh A. R. Vahidi, Restarted Adomian Decomposition Method for Solving Duffing-van der Pol Equation, Applied Mathematical Sciences, Vol. 10, pp. 499 – 507, 2012.
[15] A. B. S.S Ganji, S. Karimpour, G. Domairry, Motion of a rigid rod rocking back and forth and cubic-quintic duffing oscillators, Journal of theoretical and applied mechanics, Vol. 50, No. 1, pp. 215-229, 2012.
[16] J. H. He, Homotopy perturbation technique, Computer Methods in Applied Mechanics and Engineering, Vol. 178, No. 3, pp. 257-262, 1999.
[17] J. H. H. Y. Wu, Homotopy perturbation method for nonlinear oscillators with coordinate dependent mass, Results in Physics, Vol. 10, pp. 270-271, 2018.
[18] M. S. A. Y. Nawaz, M. Bibi, M. Naz, R. Fayyaz, An effective modification of he’s variational approach to a nonlinear oscillator, Journal of Low Frequency Noise, Vibration and Active Control, Vol. 38, No. 3-4, pp. 1013–1022, 2019.
[19] M. G. D.D. Ganji, S. Soleimani, M. Esmaeilpour, Solution of nonlinear cubic-quintic duffing oscillators using he’s energy balance method, Journal of Zhejiang University-Science A, Vol. 10, No. 9, pp. 1263-1268, 2009.
[20] Q. Y. J.H. He, C.H. He, Y. Khan, A simple frequency formulation for the tangent oscillator, Axioms, Vol. 10, No. 4, pp. 320, 2021.
[21] P. O. M.A. Yunbunga, Parameterized homotopy perturbation method, Nonlinear Science Letters A, Vol. 8, pp. 240–243, 2017.
[22] K. S. Kolbig, The complete Bell polynomials for certain arguments in terms of stirling numbers of the first kind, Applied Mathematics and Computation, Vol. 51, pp. 113-116, 1994.
[23] M. Y. K. Yabushita, K. Tsuboi, An analytic solution of projective motion with the quadratic resistance law using homotopy analysis method, Journal of Physics A: Mathematical and Theoretical Vol. 40, pp. 8403-8416, 2007.
[24] D. K. M. T. Roy, An optimal and modified homotopy perturbation method for strongly nonlinear differential equations, Nonlinear Dynamics, Vol. 111, pp. 15215-15231, 2023.