[1] M. Koizumi, FGM activities in Japan, Composites Part B: Engineering, Vol. 28, No. 1-2, pp. 1-4, 1997/01//, 1997. en
[2] Ş. D. Akbaş, Wave propagation of a functionally graded beam in thermal environments, Steel and Composite Structures, Vol. 19, No. 6, pp. 1421-1447, 2015.
[3] S. S. Vel, R. Batra, Three-dimensional exact solution for the vibration of functionally graded rectangular plates, Journal of Sound and Vibration, Vol. 272, No. 3-5, pp. 703-730, 2004.
[4] R. Bennai, H. A. Atmane, A. Tounsi, A new higher-order shear and normal deformation theory for functionally graded sandwich beams, Steel and Composite Structures, Vol. 19, No. 3, pp. 521-546, 2015.
[5] M. Arefi, Elastic solution of a curved beam made of functionally graded materials with different cross sections, Steel and Composite Structures, Vol. 18, No. 3, pp. 659-672, 2015.
[6] F. Ebrahimi, S. Dashti, Free vibration analysis of a rotating non-uniform functionally graded beam, Steel and Composite Structures, Vol. 19, No. 5, pp. 1279-1298, 2015.
[7] K. Darılmaz, Vibration analysis of functionally graded material (FGM) grid systems, Steel and Composite Structures, Vol. 18, No. 2, pp. 395-408, 2015.
[8] V. R. Kar, S. K. Panda, Nonlinear thermomechanical deformation behaviour of P-FGM shallow spherical shell panel, Chinese Journal of Aeronautics, Vol. 29, No. 1, pp. 173-183, 2016, 2016.
[9] A. Hadj Mostefa, S. Merdaci, N. Mahmoudi, An overview of functionally graded materials «FGM», in Proceeding of, Springer, pp. 267-278.
[10] T.-H. Trinh1a, D.-K. Nguyen2b, B. S. Gan, S. Alexandrov3c, Post-buckling responses of elastoplastic FGM beams on nonlinear elastic foundation, Structural Engineering and Mechanics, Vol. 58, No. 3, pp. 515-532, 2016.
[11] H. A. Atmane, A. Tounsi, F. Bernard, S. Mahmoud, A computational shear displacement model for vibrational analysis of functionally graded beams with porosities, Steel Compos. Struct, Vol. 19, No. 2, pp. 369-384, 2015.
[12] A. Ferreira, R. Batra, C. Roque, L. Qian, R. Jorge, Natural frequencies of functionally graded plates by a meshless method, Composite Structures, Vol. 75, No. 1-4, pp. 593-600, 2006.
[13] L. Qian, R. Batra, L. Chen, Static and dynamic deformations of thick functionally graded elastic plates by using higher-order shear and normal deformable plate theory and meshless local Petrov–Galerkin method, Composites Part B: Engineering, Vol. 35, No. 6-8, pp. 685-697, 2004.
[14] D. Jha, T. Kant, R. K. Singh, Higher order shear and normal deformation theory for natural frequency of functionally graded rectangular plates, Nuclear Engineering and Design, Vol. 250, pp. 8-13, 2012.
[15] B. Uymaz, M. Aydogdu, Three-dimensional vibration analyses of functionally graded plates under various boundary conditions, Journal of Reinforced Plastics and Composites, Vol. 26, No. 18, pp. 1847-1863, 2007.
[16] M. Mohamed, T. Abdelouahed, M. Slimane, A refined of trigonometric shear deformation plate theory based on neutral surface position is proposed for static analysis of FGM plate, Procedia Structural Integrity, Vol. 26, pp. 129-138, 2020.
[17] S. Hosseini-Hashemi, M. Fadaee, S. R. Atashipour, A new exact analytical approach for free vibration of Reissner–Mindlin functionally graded rectangular plates, International Journal of Mechanical Sciences, Vol. 53, No. 1, pp. 11-22, 2011, 2011.
[18] H. Matsunaga, Free vibration and stability of functionally graded plates according to a 2-D higher-order deformation theory, Composite structures, Vol. 82, No. 4, pp. 499-512, 2008.
[19] A. Rezaei, A. Saidi, Application of Carrera Unified Formulation to study the effect of porosity on natural frequencies of thick porous–cellular plates, Composites Part B: Engineering, Vol. 91, pp. 361-370, 2016.
[20] M. Askari, A. R. Saidi, A. S. Rezaei, M. A. Badizi, Navier-type free vibration analysis of porous smart plates according to reddy’s plate theory, in Proceeding of, 13.
[21] S. Merdaci, A. H. Mostefa, Influence of porosity on the analysis of sandwich plates FGM using of high order shear-deformation theory, Frattura ed Integrità Strutturale, Vol. 14, No. 51, pp. 199-214, 2020, 2020. en
[22] A. Benachour, H. D. Tahar, H. A. Atmane, A. Tounsi, M. S. Ahmed, A four variable refined plate theory for free vibrations of functionally graded plates with arbitrary gradient, Composites Part B: Engineering, Vol. 42, No. 6, pp. 1386-1394, 2011.
[23] F. Ebrahimi, S. Habibi, Deflection and vibration analysis of higher-order shear deformable compositionally graded porous plate, Steel and Composite Structures, Vol. 20, No. 1, pp. 205-225, 2016.
[24] J. Zhao, Q. Wang, X. Deng, K. Choe, R. Zhong, C. Shuai, Free vibrations of functionally graded porous rectangular plate with uniform elastic boundary conditions, Composites Part B: Engineering, Vol. 168, pp. 106-120, 2019.
[25] M. Slimane, Free vibration analysis of composite material plates" Case of a typical functionally graded FG plates ceramic/metal" with porosities, Nano Hybrids and Composites, Vol. 25, pp. 69-83, 2019.
[26] F. Mouaici, S. Benyoucef, H. A. Atmane, A. Tounsi, Effect of porosity on vibrational characteristics of non-homogeneous plates using hyperbolic shear deformation theory, Wind & structures, Vol. 22, No. 4, pp. 429-454, 2016.
[27] M. Slimane, H. M. Adda, M. Mohamed, B. Hakima, H. Hadjira, B. Sabrina, Effects of even pores distribution of functionally graded plate porous rectangular and square, Procedia Structural Integrity, Vol. 26, pp. 35-45, 2020, 2020. en
[28] S. Merdaci, A. Hadj Mostefa, Free vibration analysis of composite material plates with porosities based on the first-order shear deformation theory, Journal of Mineral and Material Science (JMMS), Vol. 1, No. 3, pp. 1-2, 2020.
[29] J. Zhu, Z. Lai, Z. Yin, J. Jeon, S. Lee, Fabrication of ZrO2–NiCr functionally graded material by powder metallurgy, Materials chemistry and physics, Vol. 68, No. 1-3, pp. 130-135, 2001.
[30] N. Wattanasakulpong, B. G. Prusty, D. W. Kelly, M. Hoffman, Free vibration analysis of layered functionally graded beams with experimental validation, Materials & Design (1980-2015), Vol. 36, pp. 182-190, 2012.
[31] M. Slimane, Analysis of Bending of Ceramic-Metal Functionally Graded Plates with Porosities Using of High Order Shear Theory, Advanced Engineering Forum, Vol. 30, pp. 54-70, 2018, 2018. en
[32] A. M. Zenkour, A quasi-3D refined theory for functionally graded single-layered and sandwich plates with porosities, Composite Structures, Vol. 201, pp. 38-48, 2018/10//, 2018. en
[33] S. Merdaci, H. Belghoul, High-order shear theory for static analysis of functionally graded plates with porosities, Comptes Rendus Mécanique, Vol. 347, No. 3, pp. 207-217, 2019/03/01/, 2019.
[34] N. Wattanasakulpong, V. Ungbhakorn, Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities, Aerospace Science and Technology, Vol. 32, No. 1, pp. 111-120, 2014/01/01/, 2014. en
[35] A. Rezaei, A. Saidi, M. Abrishamdari, M. P. Mohammadi, Natural frequencies of functionally graded plates with porosities via a simple four variable plate theory: an analytical approach, Thin-Walled Structures, Vol. 120, pp. 366-377, 2017.
[36] J. M. Whitney, N. Pagano, Shear deformation in heterogeneous anisotropic plates, 1970.
[37] T.-K. Nguyen, K. Sab, G. Bonnet, First-order shear deformation plate models for functionally graded materials, Composite Structures, Vol. 83, No. 1, pp. 25-36, 2008.
[38] J. Reddy, Analysis of functionally graded plates, International Journal for numerical methods in engineering, Vol. 47, No. 1‐3, pp. 663-684, 2000.
[39] A. M. Zenkour, Generalized shear deformation theory for bending analysis of functionally graded plates, Applied Mathematical Modelling, Vol. 30, No. 1, pp. 67-84, 2006/01//, 2006.
[40] A. Zenkour, A. Radwan, Bending response of FG plates resting on elastic foundations in hygrothermal environment with porosities, Composite Structures, Vol. 213, pp. 133-143, 2019.
[41] I. Belkorissat, M. Ameur, Influence of an initial imperfection on hygro-thermo-mechanical behaviors of FG plates laid on elastic foundation, Journal of Mechanical Science and Technology, Vol. 37, No. 5, pp. 2471-2477, 2023.
[42] B. Bouderba, M. S. A. Houari, A. Tounsi, Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations, Steel & Composite structures, Vol. 14, No. 1, pp. 85-104, 2013/01//, 2013.
[43] Z. Otmane, M. Slimane, H. M. Adda, Thermo-Mechanical Bending for Hybrid Material Plates Perfect-Imperfect Rectangular Using High Order Theory, Applied Mechanics and Materials, Vol. 909, pp. 29-44, 2022.