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Abstract 

This study examines the influence of porosity on the thermo-mechanical 

environment of functionally graded square (FGSP) and rectangular plates 

(FGRP). The current theory suggests that only four unknown functions are 

involved, compared to five in other shear deformation theories, and the 

boundary conditions on the upper and lower surfaces of the plate do not 

require shear correction factors. It is assumed that the material properties of 

this plate (FGSP) and (FGRP) vary continuously over the thickness of the 

plate according to a power law function in terms of the volume fractions of 

the constituents. The porosity distribution of the plates (FGSP) and (FGRP) 

is uniform over their cross-sections. Using the concept of virtual work, the 

equilibrium equations of a plate (FGSP) and (FGRP) are derived. Numerical 

results for the rectangular plates have been provided and compared to those 

found in the literature. The impact of aspect ratios and porosity volume on 

the bending and thermo-mechanical environment properties of the square 

(FGSP) and rectangular plates (FGRP) is examined. 
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1. Introduction 

A functionally graded material (FGM) is a heterogeneous composite material characterized by a continuous 

variation of mechanical properties from one point to another. This material is created by combining two or more 

substances with a graded distribution of their volume fractions. As discussed by Koizumi et al.[1], this type of 

material is suitable for various applications, including thermal barrier coatings for ceramic engines, electrical 

equipment, energy transformation, biomedical engineering, and optics, as presented in Refs [2-11]. 

Many experiments have been conducted to examine the vibration of functionally graded surfaces. Ferreira et al. 

[12] presented a three-dimensional specific solution for free and forced vibrations of simply supported, dynamically 
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graded rectangular plates. Qian et al.[13] used a global collocation system along with first and third-order shear 

deformation plate theories to study the free vibrations of these plates. Recent experiments have utilized higher-order 

shear and standard deformable plate theory to investigate the static deformations and free vibration of dense 

rectangular plates and simply supported plates with dynamically graded elastic properties [14-17]. Matsunaga [18] 

presented a three-dimensional vibration approach for functionally graded rectangular plates. Rezaei et al. [19] 

analyzed natural frequencies and buckling stresses of plates made of dynamically graded materials, considering 

transverse shear, normal deformations, and rotational inertia effects. The impact of porosity on the natural frequency 

of thick porous cellular plates was studied by Askari et al. [20], Merdaci et al. [21]. Benachour et al. [22] investigated 

the impact of porosity on FGM sandwich plates using the principle of higher-order shear deformation. Recently, 

wave propagation in porosity-containing FG plates has been studied using various higher-order theories, as 

presented by Ebrahimi et al. [23] and Zhao et al. [24]. Analytical solutions for the vibration of FGM porosity plates 

were proposed by Merdaci et al. [25-28] and Zhu et al. [29]. 

In the manufacturing of FGMs, micro-porosities or voids may occur during the sintering phase due to the 

significant disparity in the solidification temperatures of the constituent materials. This phenomenon was studied by 

Wattanasakulpong et al. [30]. Merdaci [31] investigated porosities created by a sequential multi-step infiltration 

process within FGM specimens. The impact of porosity on the architecture of FGM structures under static loads was 

analyzed by Zenkour [32], Merdaci et al. [33], and Wattanasakulpong et al. [34]. Rezaei et al. [35] studied the effects 

of dynamic loads and emphasized that porosities should be taken into account. Consequently, increasing attention 

has been devoted in recent years to studies focused on the static and dynamic behavior of FGM material structures. 

According to the literature, many researchers have discussed various shear deformation theories. These include 

first-order higher shear deformation theories Whitney et al. [36] and Nguyen et al. [37], third-order shear deformation 

theory studied by Reddy, [38], and sinusoidal shear deformation theory examined by Zenkour, [39]). 

The bending response of FG plates with porosities resting on elastic foundations in a hydrothermal environment 

has been examined by Zenkour et al.  [40]. The impact of an initial defect on the hygro-thermo-mechanical 

behaviour of FG plates on an elastic foundation was studied by Belkorissat et al. [41]. The thermomechanical 

bending response of thick FGM plates on Winkler-Pasternak elastic foundations was investigated by Bouderba et al. 

[42]. Using high-order theory, the response of perfect and imperfect thermomechanical bent rectangular plates made 

of hybrid ceramic and metal materials (FGP) was examined by Zerrouki et al. [43]. 

This work models the thermo-mechanical behavior of the bending response of both perfect and imperfect square 

plates (FGSP) and rectangular plates (FGRP) using a higher-order normal and shear deformation plate theory. The 

material properties of porous square and rectangular plates are influenced by variations in temperature loads. The 

analysis of perfect and imperfect square and rectangular plates is derived using the principle of virtual work based 

on the present theory, incorporating porosity and thermal effects. The effects of the porosity factor and other 

parameters are thoroughly investigated. The results obtained are compared with those from other studies. 

 

2. Mathematical model  

In this study, two types of square plate (FGSP) and rectangular plate (FGRP) models are used to study the 

influence of porosity. The porosities are assumed to be uniformly distributed over the plate section (FGSP & 

FGRP), which is proposed as follows: 
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Where: Ecc and Emm are the corresponding properties of ceramics and metal, respectively. k is the volume fraction 

exponent that takes values greater than or equal to zero. The above power-law assumption reflects a simple rule of 

mixtures used to obtain the effective properties of the ceramic-metal plate. 

The displacement field of a material point situated at (xx, yy, zz) in the FG plate is represented as: 
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Fig. 1. Configuration of (FGSP) and (FGRP) porous plate. 
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In this study the new function f (zz) is presented in the following form: 
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The static equations can be obtained by using the principle of virtual displacements. It can be stated in its 

analytical form as: 

( ) 0U V+ =                            (5) 

Where δU is the variation of the strain energy; δV is the variation of the potential energy. Can be seen that the 

displacement field in Eq. (2) uses only four unknowns (u0, v0, wss and wbb). Linear deformations can be obtained in 

the form of: 
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Eq. (7) may be used to write the component relations of a FG plate. 
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where ( xxσ , yyσ , 
1,xyτ , 

2,yzτ , 
3,zxτ )  and ( xxε , yyε , 

1,xyγ , 
2,yzγ , 

3,zxγ ) are the stress and strain 

components, respectively. Where ΔT = T – T0 in which T0 is the reference temperature. 

The distribution of applied temperature T(xx, yy, zz) through the thickness of the FG plate are: 

( )
11 22 33( , , ) ( , ) ( , ) ( , )

zzzz
T xx yy zz T xx yy T xx yy T xx yy

h h
= + +



  (8) 

Where T11, T22, and T33 are thermal loads.  

 

3. Numerical results and discussions 

The results were presented using dimensionless expressions for deflections and stresses. 
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Where

3

212(1 )

ch E
D =

−  and Thickness coordinates: hzz /= .  

 

The materials considered were Titanium and Zirconia. For all figures, Young's modulus, Poisson's ratio, and 

thermal expansion coefficients are taken as 66.2 GPa, 0.33, and 10.3×(10-6/°C) for Titanium (Ti-6Al-4V), and 117 

GPa, 0.33, and 7.11×(10^-6/°C) for Zirconia (ZrO2), respectively. The values for the porosity parameter were taken 

as 0, 0.1, 0.2, and 0.3. 

 

The current deflection results for the perfect FG square and rectangular plate are very similar to the results of 

other theories (Zenkour et al.[40], and Belkorissat et al.[41]) present in the Table 1. It is shown that the deflections 

values and rise with increasing heat loads (t22). 

Table 1: The deflection of Perfect square and rectangular plates (a/h =10, q0=100, k=2 t33=0) 

Theory 
t22 = 0 t22 = 100 

a=b 3a=b a=b 3a=b 

Zenkour et al.[40] 0.3729 1.1820 7.2408 13.4032 

Belkorissat et al.[41] 0.3781 1.1958 6.9668 13.0560 

Present  0,37959 1.19845 6.96730 13.0577 

 

From Table 2, again, the deflection and stresses results of FGRP subjected to a mechanical load compare very 

well with the theory solutions (FSDT(Whitney et al. [36]), TSDT(Reddy, [38]) and SSDT(Zenkour, [39])) for 

(FGRP) are consistent, it demonstrates the present model's validity. It is clear that the deflection and stresses 

increase as the porosity values P(χ) rises. 

 

Table 2: Comparisons of deflections and stresses of perfect and imperfect rectangular plate (FGRP). 

Theory 
    

Whitney et al. [36] 0,85892 0,51065 0,72949 −0,34377 

Reddy  [38] 0,85891 0,51545 0,72797 −0,42956 

Zenkour |39] 0,85887 0,51362 0,72784  −0,44327 

Present (P(χ)=0.0) 0,85889 0,51346 0,72796 -0,42955 

Present (P(χ)=0.1) 0,93185 0,513457 0,727954 -0,429549 

Present (P(χ)=0.2) 1,01835 0,513459 0,727961 -0,42955 

 

w xxσ xz,3τ ,1xyτ
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From Table 3, again, the deflection results compare very well with the theory solutions (Bouderba et al. [42]) for 

the perfect square plate (FGSP) are consistent, it demonstrates the present model's validity. It is clear that the 

deflection reduces as the side-to-thickness ratio (a/h) rises. 

Figure 2. illustrates how the deflection changes for various side-to-thickness ratios and porosity coefficient of 

perfect and imperfect and with/without a thermal load for square plate (FGSP) and rectangular plate (FGRP). For the 

(FGSP) and (FGRP), the deflection of the (FGSP) & (FGRP) decreases as the (a/h) increases. When the porosity 

parameter is increased under a thermal load, deflection decreases for some side-to-thickness ratio values. 

For both perfect and imperfect FG plates, as well as with and without thermal loads, we investigate dimensionless 

deflection variation as a function of the geometric ratio (a/b) for a ratio of equal thickness (a/h = 10) and a power 

law index (k = 2), as shown in Figure 3. The results show that for both perfect and defective FG plates, the 

deflection reduces as the aspect ratio rises. We can see in this figure which effects thermal load has on the different 

aspect ratios (a/b) and which effects porosity has on those ratios. The thermal load has the most significant effects, 

while the porosity effects are not as significant. 

 

 

 

Table 3: Effect of the side-to-thickness ratio (a/h) and the volume fraction exponent on the dimensionless of  

square plate (FGSP) and (q0=100, t11=0 , t22 =t33=10) 

k Theory a/h= 5 a/h=10 a/h=20 a/h=50 

0 
Bouderba et al. [42] 4,04970 1,20607 0,49406 0,29463 

Present 4,05037 1,20606 0,49407 0,29464 

1 
Bouderba et al. [42] 4,92170 1,48440 0,62354 0,38238 

Present 4,92266 1,48447 0,62354 0,38238 

2 
Bouderba et al. [42] 5,10720 1,54760 0,65537 0,40539 

Present 5,10855 1,54764 0,65537 0,40539 

3 
Bouderba et al. [42] 5,20060 1,57840 0,67020 0,41571 

Present 5,20218 1,57851 0,67020 0,41570 

4 
Bouderba et al. [42] 5,26690 1,60000 0,68046 0,42274 

Present 5,26858 1,60015 0,68045 0,42275 

5 
Bouderba et al. [42] 5,32010 1,61750 0,68878 0,42850 

Present 5,32180 1,61754 0,68876 0,42851 
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Fig 2: Variation of deflection versus (a/h) for rectangular plate (FGRP) & square plate (FGSP). 
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Fig 3: Variation of deflection versus aspect ratio for plate (FG). 

Figure 4. Illustrates how decreasing the dimensionless deflections of both perfect and imperfect rectangular plate 

(FGRP) and square plate (FGSP) is possible by raising the porosity parameter and thermo-mechanic loading. 

Furthermore, for the same value of the porosity parameter, the dimensionless deflection in the case of thermal load 

(t22=t33=20) is larger than that in the cases of t22=t33=5, 10 and 15. This is mostly because of where the porosity is 

and how important thermal loading is. 

As can be seen in Figure 5 and 6, rectangular plate (FGRP) and square plate (FGSP) that are perfect or imperfect 

have tensile stresses on their top surface, compressive stresses on their bottom side, and zero values on their middle 

axis. In contrast, rectangular plate (FGRP) & square plate (FGSP) that have porosity had the lowest values because 

plate material characteristics vary. It is evident that as the porosity coefficient rises, so do the shear stresses. A 

position above the mid-plane of the perfect and imperfect rectangular plate (FGRP) experiences the highest value of 

stresses. 
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Fig 4: Variation of deflection versus of the porosity coefficient and different thermo-mechanic loading for rectangular plate (FGRP) & 

square plate (FGSP). 

4. Conclusion 

In this study, the analysis of perfect and imperfect functionally graded rectangular plates (FGRP) and square plate 

(FGSP) in a thermal environment with different qualities, porosity factors, and other characteristics is based on the 

higher-order shear deformation theory. The results for porous functionally graded rectangular plates (FGRP) and 

square plate (FGSP), particularly how temperature affects the mechanical response of the material, have been 

presented. The results also show that thermal parameters and the porosity factor are important in porous rectangular 

plates (FGRP) and square plate (FGSP). The present method is quite effective for accurate bending analysis of 

(FGRP) & (FGSP), according to all comparison experiments. Finally, the study of the thermo-mechanical behavior 

of perfect and defective rectangular plates (FGRP) and square plate (FGSP)critically depends on temperature. 
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Fig 5: Variation of axial stress across the thickness of rectangular plate (FGRP) & square plate (FGSP). 
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Fig 6: Variation of shear stress across the thickness of rectangular plate (FGRP) & square plate (FGSP). 
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