[1] S. Moradi Haghighi, A. Alibeigloo, Thermal Buckling and Vibrational Analysis of Carbon Nanotube Reinforced Rectangular Composite Plates Based on Third-Order Shear Deformation Theory, Journal of Engineering Mechanics, Vol. 149, No. 6, pp. 04023026, 2023/06/01, 2023.
[2] J. Zheng, C. Zhang, F. Musharavati, A. Khan, T. A. Sebaey, Thermo-mechanical buckling analysis of FG-GNPs reinforced composites sandwich microplates using a trigonometric four-variable shear deformation theory, Case Studies in Thermal Engineering, Vol. 26, pp. 101120, 2021/08/01/, 2021.
[3] A. Mihankhah, Z. Khoddami Maraghi, A. Ghorbanpour Arani, Vibration and aeroelastic instability analysis in GPL-porous multi-layered beam with the rotation effect, International Journal for Computational Methods in Engineering Science and Mechanics, pp. 1-24.
[4] M. Karimiasl, A. Alibeigloo, Nonlinear vibration characteristic of a sandwich cylindrical panel with auxetic core and GPLRC facing sheets embedded with piezoelectric layers, Journal of Intelligent Material Systems and Structures, Vol. 34, No. 10, pp. 1159-1177, 2023/06/01, 2022.
[5] F. Bargozini, M. Mohammadimehr, E. A. Dawi, M. Salavati-Niasari, Buckling of a sandwich beam with carbon nano rod reinforced composite and porous core under axially variable forces by considering general strain, Results in Engineering, Vol. 21, pp. 101945, 2024/03/01/, 2024.
[6] A. Noruzi, M. Mohammadimehr, F. Bargozini, Experimental and theoretical results for bending and buckling of a five-layer sandwich plate reinforced by carbon nanotubes/carbon nanorods/graphene platelets/shape memory alloy based on RFSDT, Archive of Applied Mechanics, Vol. 94, No. 8, pp. 2151-2173, 2024/08/01, 2024.
[7] M. Pahlavanzadeh, M. Mohammadimehr, M. Irani-Rahaghi, S. M. Emamat, Vibration response on the rod of vortex bladeless wind power generator for a sandwich beam with various face sheets and cores based on different boundary conditions, Mechanics Based Design of Structures and Machines, pp. 1-27.
[8] M. Arabzadeh-Ziari, M. Mohammadimehr, E. Arabzadeh-Ziari, M. Asgari, Deflection, buckling and vibration analyses for a sandwich nanocomposite structure with foam core reinforced with GPLs and SMAs based on TSDBT, Journal of Computational Applied Mechanics, Vol. 55, No. 2, pp. 289-321, 2024.
[9] R. Kumar, M. Singh, C. Kumar, J. Damania, J. Singh, J. Singh, Assessment of Radial basis function based meshfree method for the buckling analysis of rectangular FGM plate using HSDT and Strong form formulation, Journal of Computational Applied Mechanics, Vol. 53, No. 3, pp. 332-347, 2022.
[10] E. Arabzadeh-Ziari, M. Mohammadimehr, M. Arabzadeh-Ziari, M. Asgari, Vibration, Bending, and Buckling of a Seven-Layer Sandwich Beam with Balsa Core Reinforced by Nanocomposite and Shape Memory Alloy Face Sheets Using Piezoelectromagnetic Layers, Arabian Journal for Science and Engineering, 2024/09/06, 2024.
[11] E. Sh Khoram-Nejad, S. Moradi, M. Shishesaz, Free vibration analysis of the cracked post-buckled axially functionally graded beam under compressive load, Journal of Computational Applied Mechanics, Vol. 52, No. 2, pp. 256-270, 2021.
[12] S. R. Bathini, V. K. R. K, C. A. B, Free vibration behavior of bi-directional functionally graded plates with porosities using a refined first order shear deformation theory, Journal of Computational Applied Mechanics, Vol. 51, No. 2, pp. 374-388, 2020.
[13] Y. Zhao, F. Guo, D. Xu, Vibration energy characters study of a soft-core beam system coupled through nonlinear coupling layers, Communications in Nonlinear Science and Numerical Simulation, Vol. 129, pp. 107681, 2024.
[14] Z.-Y. Li, L.-T. Xie, T.-X. Ma, Y.-Z. Wang, Y.-Y. Chai, C. Zhang, F.-M. Li, A simple active adaptive control method for mitigating and isolating mechanical vibrations of the pyramid-core lattice sandwich structures, Journal of Sound and Vibration, Vol. 577, pp. 118321, 2024.
[15] J. Morales, R. Sedaghati, A Novel Semi-Active Control Approach for Flexible Structures: Vibration Control through Boundary Conditioning Using Magnetorheological Elastomers, Vibration, Vol. 7, No. 2, pp. 605-626, 2024.
[16] W. C. Chi, X. G. Sun, Y. Q. Wang, Vibration control of piezoelectric beams with active constrained layer damping treatment using LADRC algorithm, in Proceeding of, Elsevier, pp. 106297.
[17] A. Gupta, S. Panda, R. S. Reddy, Damping capabilities of viscoelastic composites for active/passive constrained layer damping of the plate vibration: a comparative study, Journal of Vibration Engineering & Technologies, Vol. 12, No. 1, pp. 891-908, 2024.
[18] M. A. Kattimani, S. M. Hussain, P. Khasge, S. Mohrir, S. Suman, H. Masum, Utilizing finite element analysis to evaluate the monitoring of sandwich beam conditions, Brazilian Journal of Development, Vol. 10, No. 4, pp. e68942-e68942, 2024.
[19] I. Shardakov, A. Shestakov, I. Glot, G. Gusev, V. Epin, R. Tsvetkov, Piezoceramics Actuator with Attached Mass for Active Vibration Diagnostics of Reinforced Concrete Structures, Sensors, Vol. 24, No. 7, pp. 2181, 2024.
[20] H.-T. Liu, P.-H. Wang, W.-J. Wu, J.-Q. Li, 3D piezoelectric composite honeycombs with alternating bi-material beam: An active control method for elastic properties, Materials Today Communications, Vol. 38, pp. 108191, 2024.
[21] X. Yu, K. Huang, K. A. Alnowibet, Application of intelligent controller to speed up vibration attenuation of a sandwich smart structure subjected to external excitation, Mechanics of Advanced Materials and Structures, pp. 1-16, 2024.
[22] S. K. Shada, S. Kattimani, R. MR, Active layer damping of bi-directionally tapered functionally graded sandwich plates with 1-3 piezoelectric composites, Mechanics of Advanced Materials and Structures, pp. 1-20, 2024.
[23] Z. Guo, Optimized PI-PDF active structural acoustic control of smart FG GPL-reinforced closed-cell metallic foam sandwich plate, Journal of Fluids and Structures, Vol. 129, pp. 104168, 2024.
[24] Y. Zhang, Z. Wang, D. Tazeddinova, F. Ebrahimi, M. Habibi, H. Safarpour, Enhancing active vibration control performances in a smart rotary sandwich thick nanostructure conveying viscous fluid flow by a PD controller, Waves in Random and Complex Media, Vol. 34, No. 3, pp. 1835-1858, 2024.
[25] H. Luo, H. Li, X. Wu, G. Liu, W. Zhang, Dynamic Modeling and Active Vibration Control of Piezoelectric Laminated Structure Based on Macrofiber Composite, Structural Control and Health Monitoring, Vol. 2024, No. 1, pp. 8826434, 2024.
[26] X. G. Sun, W. C. Chi, Y. Q. Wang, Linear active disturbance rejection control algorithm for active vibration control of piezo-actuated beams: Theoretical and experimental studies, Thin-Walled Structures, Vol. 199, pp. 111782, 2024.
[27] Y. Zhang, W. Sun, H. Zhang, D. Du, K. Xu, H. Li, Vibration Analysis and Active Control of Irregular Integrated Composite Sandwich Plates with Incompletely Constrained Boundaries, Available at SSRN 4803636.
[28] R. Qi, L. Wang, X. Zhou, J. Xue, J. Jin, L. Yuan, Z. Shen, G. Deng, Embedded piezoelectric actuation method for enhanced solar wings vibration control, International Journal of Mechanical Sciences, Vol. 274, pp. 109271, 2024.
[29] A. Alsahlani, A. I. Alsabery, A. Al-Khateeb, A. A. Eidan, M. J. Alshukri, Vibration suppression of smart composite beam using model predictive controller, Open Engineering, Vol. 14, No. 1, pp. 20240001, 2024.
[30] Z. Xinyu, X. Yushan, W. Zhen, R. Xiaohui, HIGH PRECISION MODEL AND ACTIVE CONTROL FOR PIEZOELECTRIC INTELLIGENT FUNCTIONALLY GRADIENT SANDWICH STRUCTURES, Chinese Journal of Theoretical and Applied Mechanics, Vol. 56, No. 1, pp. 130-140, 2024.
[31] L. M. Essedik, T. Rachid, E. Madjid, C. Taha, C. Yasser, B. Mourad, R. Said, Active vibration control of piezoelectric multilayers FG‐CNTRC and FG‐GPLRC plates, Polymer Composites, 2024.
[32] F. Ebrahimi, M. F. Ahari, Active vibration control of the multilayered smart nanobeams: velocity feedback gain effects on the system’s behavior, Acta Mechanica, Vol. 235, No. 1, pp. 493-510, 2024.
[33] Z. Wang, G. Cao, X. Meng, M. Rahimi, P. Rosaiah, M. R. Karim, A. Yvaz, S. Strashnov, Vibrational Analysis of Magneto-viscoelastic Bi-directional Functionally Graded Beams Subjected to Complex Environments Based on a Novel High-Order Shear Deformation Theory, Journal of Vibration Engineering & Technologies, Vol. 12, No. 4, pp. 5759-5770, 2024.
[34] M. Soltani, J. J. Fesharaki, S. A. Galehdari, R. T. Esfahani, M. Shahgholi, A comprehensive evaluation of the vibration control approach of the multi-layer sandwich composite piezoelectric micro-beam using higher-order elasticity theory and surface energy, in Proceeding of, Elsevier, pp. 105880.
[35] G. Han, Y. Wu, G. Hou, X. Xu, Investigation on parametric excitation vibration and piezoelectric active control of axially moving viscoelastic beams, Journal of Vibration and Control, pp. 10775463241260560, 2024.
[36] M. Jafari Niasar, A. A. Jafari, M. Irani Rahaghi, S. Mohammadrezazadeh, Active control of free and forced vibration of a rotating FG cylindrical shell via FG piezoelectric patches, Mechanics Based Design of Structures and Machines, Vol. 52, No. 7, pp. 3900-3924, 2024/07/02, 2024.
[37] T. Liu, C. Liu, Z. Zhang, Adaptive active vibration control for composite laminated plate: Theory and experiments, Mechanical Systems and Signal Processing, Vol. 206, pp. 110876, 2024.
[38] H. Pu, S. Fu, M. Wang, X. Fang, Y. Cai, J. Ding, Y. Sun, Y. Peng, S. Xie, J. Luo, Active vibration hybrid control strategy based on multi-DOFs piezoelectric platform, Journal of Intelligent Material Systems and Structures, Vol. 35, No. 3, pp. 352-366, 2024.
[39] Y. Wei, M. Al-Furjan, L. Shan, X. Shen, R. Kolahchi, M. Rabani bidgoli, A. Farrokhian, Micro-mass sensor-based vibration response of smart bidirectional functionally graded auxetic microbeams, Archives of Civil and Mechanical Engineering, Vol. 24, No. 1, pp. 38, 2024.
[40] C. Hameury, G. Ferrari, G. Franchini, M. Amabili, An experimental approach to multi-input multi-output nonlinear active vibration control of a clamped sandwich beam, Mechanical Systems and Signal Processing, Vol. 216, pp. 111496, 2024/07/01/, 2024.
[41] V. Rathi, A. A. Khan, Development of Vibration Annihilation of Sandwiched Beam with MROF DTSMC: A Novel Approach, 2024.
[42] M. Kim, Y.-B. Park, O. I. Okoli, C. Zhang, Processing, characterization, and modeling of carbon nanotube-reinforced multiscale composites, Composites Science and Technology, Vol. 69, No. 3-4, pp. 335-342, 2009.
[43] M. Safaei, P. Malekzadeh, M. R. Golbahar Haghighi, Out-of-plane moving load response and vibrational behavior of sandwich curved beams with GPLRC face sheets and porous core, Composite Structures, Vol. 327, pp. 117658, 2024/01/01/, 2024.
[44] F. Bargozini, M. Mohammadimehr, The theoretical and experimental buckling analysis of a nanocomposite beams reinforced by nanorods made of recycled materials, Polymer Composites, Vol. 45, No. 4, pp. 3327-3342, 2024.
[45] A. Ghorbanpour Arani, E. Haghparast, H. Babaakbar Zarei, Vibration of axially moving 3-phase CNTFPC plate resting on orthotropic foundation, Structural Engineering and Mechanics, Vol. 57, pp. 105-126, 01/10, 2016.
[46] M. Kolooli Mogehi, M. Mohammadimehr, N. Dình Duc, Vibration analysis of a sandwich Timoshenko beam reinforced by GOAM/CNT with various boundary conditions using VIM, Materials Science and Engineering: B, Vol. 304, pp. 117364, 2024/06/01/, 2024.
[47] V. N. Burlayenko, H. Altenbach, S. D. Dimitrova, Modal characteristics of functionally graded porous Timoshenko beams with variable cross-sections, Composite Structures, Vol. 342, pp. 118273, 2024/08/15/, 2024.
[48] P. Sourani, A. Ghorbanpour Arani, M. Hashemian, S. Niknejad, Nonlinear Dynamic Stability Analysis of Axially Moving CNTRC Piezoelectric Viscoelastic Nano/Micro Plate Based on MCST, Journal of Computational Applied Mechanics, Vol. 55, No. 2, pp. 242-274, 2024.
[49] M. Arefi, R. Karroubi, M. Irani-Rahaghi, Free vibration analysis of functionally graded laminated sandwich cylindrical shells integrated with piezoelectric layer, Applied Mathematics and Mechanics, Vol. 37, No. 7, pp. 821-834, 2016/07/01, 2016.
[50] N. Shahveisi, S. Feli, Dynamic and electrical responses of a curved sandwich beam with glass reinforced laminate layers and a pliable core in the presence of a piezoelectric layer under low-velocity impact, Applied Mathematics and Mechanics, Vol. 45, No. 1, pp. 155-178, 2024.
[51] Y. Akbari Birgani, A. Ghorbanpour Arani, Z. Khoddami Maraghi, Nonlocal buckling analysis of five-layer laminated nanocomposites on kerr foundation: A refined zigzag theory approach, Journal of Sandwich Structures & Materials, pp. 10996362241280020, 2024.
[52] N. A. Vu, T. D. Pham, T. T. Tran, Q.-H. Pham, Third-order isogeometric analysis for vibration characteristics of FGP plates in the thermal environment supported by Kerr foundation, Case Studies in Thermal Engineering, Vol. 45, pp. 102890, 2023/05/01/, 2023.
[53] B. R. Navi, M. Mohammadimehr, A. G. Arani, Active control of three-phase CNT/resin/fiber piezoelectric polymeric nanocomposite porous sandwich microbeam based on sinusoidal shear deformation theory, Steel and Composite Structures, Vol. 32, No. 6, pp. 753-767, 2019.
[54] H. S. Jouybary, A. M. Mabwe, D. A. Khaburi, A. El Hajjaji, An LMI-Based Linear Quadratic Regulator (LQR) Control for Modular Multilevel Converters (MMCs) Considering Parameters Uncertainty, IEEE Access, 2024.
[55] O. Saleem, J. Iqbal, Phase-Based Adaptive Fractional LQR for Inverted-Pendulum-Type Robots: Formulation and Verification, IEEE Access, 2024.
[56] A. Sachan, N. Kumar, SDN-enabled Quantized LQR for Smart Traffic Light Controller to Optimize Congestion, ACM Trans. Internet Technol., Vol. 24, No. 1, pp. Article 7, 2024.
[57] B. Akgöz, Ö. Civalek, A size-dependent shear deformation beam model based on the strain gradient elasticity theory, International Journal of Engineering Science, Vol. 70, pp. 1-14, 2013/09/01/, 2013.
[58] P. R. Heyliger, F. Ramirez, E. Pan, Two-dimensional static fields in magnetoelectroelastic laminates, Journal of Intelligent Material Systems and Structures, Vol. 15, No. 9-10, pp. 689-709, 2004.
[59] K. Sharma, M. Shukla, Three-Phase Carbon Fiber Amine Functionalized Carbon Nanotubes Epoxy Composite: Processing, Characterisation, and Multiscale Modeling, Journal of Nanomaterials, Vol. 2014, No. 1, pp. 837492, 2014.
[60] F. H. Gojny, M. H. G. Wichmann, U. Köpke, B. Fiedler, K. Schulte, Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content, Composites science and technology, Vol. 64, No. 15, pp. 2363-2371, 2004.
[61] M. Li, C. Guedes Soares, R. Yan, Free vibration analysis of FGM plates on Winkler/Pasternak/Kerr foundation by using a simple quasi-3D HSDT, Composite Structures, Vol. 264, pp. 113643, 2021/05/15/, 2021.