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Abstract 

 In the present article, forced vibration control of Timoshenko’s micro sandwich 

beam based on modified couple stress theory (MCST) is studied. The face sheets 

are made of three-phase reinforced nanocomposite including resin, piezoelectric 

and CNT\CNR\GPL materials, and top and bottom layers operate as actuator 

and sensor, respectively. The micro sandwich beam is placed on Kerr’s 

foundation and subject to harmonic force with resonance excitation frequency. 

By considering the equations of motion in the state-space form and using LQR, 

the amplitude of forced vibrations of the micro beam is optimized. Furthermore, 

the effects of various parameters including the volume fraction of CNT, GPL and 

CNR, three parameters of Kerr’s elastic foundation and three natural frequency 

modes on the suppression and settling time and forced vibration response of a 

micro sandwich beam is investigated. In this research, for various types and 

volume fractions of nanocomposites, the second and third natural frequency 

modes increase 3.5 and 6.7 times, respectively, compared to first natural 

frequency mode. Also, the Kerr foundation increases the first, second and third 

mode of natural frequency by about 46%, 13.1% and 7.7%, respectively.  

Keywords: Vibration control; Micro sandwich Timoshenko beam; MCST; LQR; Various nanocomposites; 

Kerr’s elastic foundation; Integrated by piezoelectric; 

1. Introduction 

In many industries that require light and high-strength components, such as automotive, marine, aerospace, 

shipbuilding, transportation, electronics, biomedical engineering, nuclear engineering, the use of sandwich structures has 

expanded greatly. To increase the characteristics such as strength, aspect ratio, stiffness and improve the performance of 

sandwich structures, they are reinforced with nanoparticles. Usually, in the face sheet layers of sandwich structures, these 

nanoparticles are added to the matrix in the composite structure and lead to the increase in the modulus of elasticity and 

yield strength. One of the most widely used nanoparticles is carbon nanostructures such as carbon nanotubes (CNTs) [1] 

, graphene platelets (GPLs) [2-4] and carbon nanorods (CNRs) [5-7], which can improve the functional characteristics of 

composites and sandwich structures as reinforcements. In the literatures, the researchers is investigated buckling [8, 9], 

bending [10], impact response and vibration analysis [11, 12] of the carbon nanostructures and various parameters on 

sandwich structure. Also, by adding other materials such as piezoelectric materials that react to electric and magnetic 
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fields and converting this type of composite to three-phase composites, sandwich structures become smart structures. 

 

Vibration is one of the problems that engineers always face and it causes disruption in the performance of the structure, 

so finding a suitable method to control vibrations is always of great importance [13]. So far, three methods to control 

vibrations including active control [14], semi-active control [15] and passive control [16, 17] are used. One of the vibration 

control methods is the active vibration control method, which is widely used. To control the vibrating structure, the use 

of piezoelectric materials as sensors and actuators has been proposed [18-20]. The piezoelectric material can be used as 

a thin layer patched on the structure [21, 22] or as a separate layer of the sandwich structure [23, 24] or as a three-phase 

composite. One of the applications of active vibration control is in the aerospace industry, such as the vibration control 

of solar arrays, where the solar array is considered as a flexible cantilever thin plate with composite macro fiber (MFC) 

piezoelectric patches and the Proportional-Integral-Derivative (PID) method is used to suppress vibration [25]. Also, for 

lightweight thin-walled structures on spacecraft, which are considered as Euler-Bernoulli beam with piezoelectric patches 

under fixed harmonic excitation and variable harmonic excitation, active vibration control method and vibration 

suppression algorithm is considered [26]. Active vibration control is also effective on aircraft wings that are considered 

as integrated composite sandwich plates (ICSPs) embedded macro-fiber composites (MFC) based on the first-order shear 

deformation theory (FSDT) with incompletely constrained boundaries and irregular geometric shapes with piezoelectric 

effect [27]. Another application of active vibration control in the aerospace industry, the solar wing as a vital energy 

component of spacecraft, often faces challenges due to vibrations and deformations during the orbit, which affect the 

pointing accuracy of the spacecraft and operational performance, a new method Actuation based on an embedded 

piezoelectric actuator (EPA) is proposed [28]. For a fixed-free cantilever composite beam equipped with piezoelectric 

materials where the sensors and actuators are bonded to the upper and lower surfaces at arbitrary locations along the 

beam’s length. Numerical analysis is showed that the closer the actuator patches are to the end of the clamped, the settling 

time is shorter. As a result, the longest settling time occurs at the free end and the least at the clamped of cantilever beams 

[29]. In active vibration control, the feedback gain coefficient affects the reduction of the structure's oscillation amplitude 

and the natural frequency, and by adjusting the feedback gain coefficient, the vibration of the structure can be significantly 

reduced [30-33]. 

 

 In vibration control, the use of a suitable algorithm is very effective to improve the performance of the control system 

and the voltage piezoelectric layer plays an important role in this field. For multi-layer sandwich composite piezoelectric 

micro-beams is suggest that the Linear Quadratic Integral (LQI) control scheme [34]. One of the linear controllers is based 

on solving the Riccati algebraic equation and is very suitable for linear vibrations. In these controllers, state feedback is 

considered based on linear quadratic regulator (LQR) [35, 36]. Other control algorithm is filtered-x least mean square 

(FxLMS) algorithm, which is used for an analysis model of adaptive active vibration control system of composite 

laminated plate using macro fiber composite (MFC) piezoelectric patches [37]. Also, feedback control based on the 

integral force feedback (IFF) algorithm is considered for active vibration control of a multiple degrees of freedom (multi-

DOFs) strategy based on a piezoelectric platform [38]. 

 

Beams have a wide range of applications, from giant structures such as spacecraft, ships, and submarines to micro-

electro-mechanical systems (MEMS) and nano-electro-mechanical systems (NEMS), including micro actuators, micro 

sensors [39] and biomedical applications. 

Usually, the large amplitude vibrations associated with the nonlinear system are controlled using linear controllers 

such as positive position feedback (PPF). In an experimental approach for a clamped composite beam, a PPF controller 

with single-input single-output (SISO) architecture and multiple-input multiple-output (MIMO) architecture is developed 

[40, 41]. 

 

By reviewing the literature, it was found that the active control of forced vibrations in the resonant frequency range 

of sandwich micro  beams with nanocomposite layers has not been considered. Also, there is no discussion about sandwich 

micro beams with nanocomposite layers on elastic foundation and the effect of different nanocomposites and also various 

parameters of elastic foundation on the active control of forced vibrations. Therefore, the control of forced vibrations of 

a Timoshenko sandwich micro beam with different face sheet (CNT, CNR and GPL) on the Kerr’s elastic foundation, 

which is subjected to the harmonic force with the resonance excitation frequency, is investigated. The forced vibration 

and deflection responses are analyzed for the various volume fraction CNT, GPL and CNR. The settling time, the 

amplitude of deflection and first natural frequency mode for the constant volume fraction of the three nanocomposites 

(CNT, GPL and CNR) are compared. The effects of various volume fraction and various nanocomposite on three modes 

of natural frequency are investigated. Active vibration control for three types of elastic foundations including Winkler, 

Pasternak, and Kerr  is also discussed. Also, the effects of various foundations on increase or decrease of first, second and 

third natural frequency are discussed. Finally, the force vibration response and settling time of Timoshenko’s micro 

sandwich beam with CNR reinforced integrated by piezoelectric on Kerr foundation is analyzed for three modes of natural 

frequency. Due to the dimensions of the micro beam, governing equations are derived based on modified couple stress 

theory that it consider small-scale effect. To solve the equations of motion, the state space form has been used, which 

leads to reducing the order of the equations. In the control algorithm, state feedback is considered based on linear quadratic 

regulator (LQR).  
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2. Mechanical properties 

In this research, the three-phase reinforced nanocomposite face sheets are made of piezoelectric material (PVDF) as 

fiber reinforced by CNT or CNR or GPL in the epoxy matrix. Thus, the material properties of the resin\CNT are estimated 

by Halphin-Tsai semi-empirical equations as follows [42]: 

 

𝐸𝑚
𝐶𝑁𝑇 = (

3

8
(1 + 2

𝑙𝐶𝑁𝑇𝜂𝐿𝑉𝐶𝑁𝑇
𝑑𝐶𝑁𝑇(1 − 𝜂𝐿𝑉𝐶𝑁𝑇)

) +
5

8
(

1 + 2𝜂𝑑𝑉𝐶𝑁𝑇
𝑑𝐶𝑁𝑇(1 − 𝜂𝑑𝑉𝐶𝑁𝑇)

))𝐸𝑟𝑒𝑠𝑖𝑛  (1) 

𝜂𝐿 =
(
𝐸𝐶𝑁𝑇

𝐸𝑟𝑒𝑠𝑖𝑛
⁄ ) − (

𝑑𝐶𝑁𝑇
4𝑡⁄ )

(
𝐸𝐶𝑁𝑇

𝐸𝑟𝑒𝑠𝑖𝑛
⁄ ) + (

𝑙𝐶𝑁𝑇
2𝑡⁄ )

 (2) 

𝜂𝑑 =
(
𝐸𝐶𝑁𝑇

𝐸𝑟𝑒𝑠𝑖𝑛
⁄ ) − (

𝑑𝐶𝑁𝑇
4𝑡⁄ )

(
𝐸𝐶𝑁𝑇

𝐸𝑟𝑒𝑠𝑖𝑛
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𝑑𝐶𝑁𝑇
2𝑡⁄ )

 (3) 

𝜈12
𝑚 = 𝜈𝑟𝑒𝑠𝑖𝑛  (4) 

𝜌𝑚
𝐶𝑁𝑇 = 𝜌𝐶𝑁𝑇𝑉𝐶𝑁𝑇 + 𝜌𝑟𝑒𝑠𝑖𝑛𝑉𝑟𝑒𝑠𝑖𝑛  (5) 

𝐺𝑚
𝐶𝑁𝑇 =

𝐸𝑚
𝐶𝑁𝑇

2(1 + 𝜈12
𝑚)

 (6) 

and material properties of the 𝑘𝑡ℎGPL are defined as follows [43]: 

 

𝐸𝑚
𝐺𝑃𝐿 = (

3

8
(
1 + 𝜉𝐿𝜂𝐿𝑉𝐺𝑃𝐿
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(𝑘)

) +
5

8
(
1 + 𝜉𝑤𝜂𝑤𝑉𝐺𝑃𝐿

(𝑘)

1 − 𝜂𝑤𝑉𝐺𝑃𝐿
(𝑘)

))𝐸𝑟𝑒𝑠𝑖𝑛  (7) 

𝜂𝐿 =
(
𝐸𝐺𝑃𝐿

𝐸𝑟𝑒𝑠𝑖𝑛
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(
𝐸𝐺𝑃𝐿

𝐸𝑟𝑒𝑠𝑖𝑛
⁄ ) + 𝜉𝐿

 (8) 

𝜂𝑑 =
(
𝐸𝐺𝑃𝐿

𝐸𝑟𝑒𝑠𝑖𝑛
⁄ ) − 1

(
𝐸𝐺𝑃𝐿

𝐸𝑟𝑒𝑠𝑖𝑛
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 (9) 

𝜉𝐿 = 2
𝐿𝐺𝑃𝐿
𝑡𝐺𝑃𝐿

 (10) 

𝜉𝑤 = 2
𝑤𝐺𝑃𝐿
𝑡𝐺𝑃𝐿

 (11) 

𝜈12𝑚
(𝑘) = 𝜈𝐺𝑃𝐿𝑉𝐺𝑃𝐿

(𝑘) + 𝜌𝑟𝑒𝑠𝑖𝑛𝑉𝑟𝑒𝑠𝑖𝑛  (12) 
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𝜌𝑚
𝐺𝑃𝐿 = 𝜌𝐺𝑃𝐿𝑉𝐺𝑃𝐿

(𝑘) + 𝜌𝑟𝑒𝑠𝑖𝑛𝑉𝑟𝑒𝑠𝑖𝑛  (13) 

𝐺𝑚
𝐺𝑃𝐿 =

𝐸𝑚
𝐺𝑃𝐿

2(1 + 𝜈12
(𝑘))

 (14) 

 

and also for CNR are determined as follows [44]: 

 

𝐸11𝑚
𝐶𝑁𝑅 = 𝐸11𝐶𝑁𝑅𝑉𝐶𝑁𝑅 + 𝐸𝑟𝑒𝑠𝑖𝑛𝑉𝑟𝑒𝑠𝑖𝑛  (15) 

𝐸22𝑚
𝐶𝑁𝑅 =

1

𝑉𝐶𝑁𝑅
𝐸22𝐶𝑁𝑅

+
𝑉𝑟𝑒𝑠𝑖𝑛
𝐸𝑟𝑒𝑠𝑖𝑛

 
(16) 

𝜈𝑚
𝐶𝑁𝑅 = 𝜈𝐶𝑁𝑅𝑉𝐶𝑁𝑅 + 𝜈𝑟𝑒𝑠𝑖𝑛𝑉𝑟𝑒𝑠𝑖𝑛  

(17) 

ρm
CNR = ρCNRV𝐶𝑁𝑅 + ρresinVresin (18) 

𝐺𝑚
𝐶𝑁𝑅 =

𝐸𝑚
𝐶𝑁𝑅

2(1 + 𝜈12
𝑚)

 

(19) 

The third phase of the reinforced nanocomposite is a fiber that is piezoelectric, so the properties of the three-phase 

reinforced nanocomposite materials are obtained as follows [45]: 

 

𝐸11 = 𝐸11𝑝𝑖𝑒𝑧𝑜𝑉𝑝𝑖𝑒𝑧𝑜 + 𝐸11𝑚
𝐶𝑁𝑇/𝐺𝑃𝐿/𝐶𝑁𝑅

𝑉𝑚
𝐶𝑁𝑇/𝐺𝑃𝐿/𝐶𝑁𝑅  

(20) 

𝐸22 =
1

𝑉𝑝𝑖𝑒𝑧𝑜
𝐸22𝑝𝑖𝑒𝑧𝑜

+
𝑉𝑚
𝐶𝑁𝑇/𝐺𝑃𝐿/𝐶𝑁𝑅

𝐸22𝑚
𝐶𝑁𝑇/𝐺𝑃𝐿/𝐶𝑁𝑅

 
(21) 

𝜈12 = 𝜈𝑝𝑖𝑒𝑧𝑜𝑉𝑝𝑖𝑒𝑧𝑜 + 𝜈𝑚
𝐶𝑁𝑇/𝐺𝑃𝐿/𝐶𝑁𝑅

𝑉𝑚
𝐶𝑁𝑇/𝐺𝑃𝐿/𝐶𝑁𝑅  

(22) 

𝜌 = 𝜌𝑝𝑖𝑒𝑧𝑜𝑉𝑝𝑖𝑒𝑧𝑜 + 𝜌𝑚
𝐶𝑁𝑇/𝐺𝑃𝐿/𝐶𝑁𝑅

𝑉𝑚
𝐶𝑁𝑇/𝐺𝑃𝐿/𝐶𝑁𝑅  

(23) 

𝐺12 =
1

𝑉𝑝𝑖𝑒𝑧𝑜
𝐺𝑝𝑖𝑒𝑧𝑜

+
𝑉𝑚
𝐶𝑁𝑇/𝐺𝑃𝐿/𝐶𝑁𝑅

𝐺𝑚
𝐶𝑁𝑇/𝐺𝑃𝐿/𝐶𝑁𝑅

 
(24) 

 

3. Fundamental relations of Timoshenko beam 

A Timoshenko’s micro sandwich beam with length L, width b and thickness h is considered. The thickness of core, 

top layer and bottom layer are ℎ𝑐, ℎ𝑡 and ℎ𝑏, respectively. The schematic and geometry of Timoshenko’s micro sandwich 

beam on Kerr’s foundation with CNT/GPL/CNR layers integrated by piezoelectric as sensor and actuator at the bottom 

and top face sheets, respectively, are shown in Fig.1. 
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Fig.1. The schematic and geometry of micro sandwich beam on Kerr’s foundation with CNT/GPL/CNR layers integrated by piezoelectric as 

sensor and actuator  

 

The equations governing the sandwich structure are obtained by considering the Cartesian coordinates located in the 

corner of its middle plane. In this article, the displacement field of sandwich beam based on Timoshenko's beam theory 

is considered as follows [46, 47]: 

 

𝑢(𝑥, 𝑧, 𝑡) = 𝑧𝜓(𝑥, 𝑡) 

(26) 𝑣(𝑥, 𝑧, 𝑡) = 0 

𝑤(𝑥, 𝑧, 𝑡) = 𝑤(𝑥, 𝑡) 

 

and u, v and w are displacement components directions, respectively.  

The non-zero terms of strain-displacement relations are expressed as follows: 

 

𝜀𝑥 =
𝜕𝑢

𝜕𝑥
= 𝑧𝜓,𝑥 

(27) 

𝛾𝑥𝑧 =
𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑥
= 𝜓 + 𝑤,𝑥 

 

in which 𝜀𝑥 and 𝛾𝑥𝑧 represent normal and shear stress for sandwich beams, respectively.  

By considering piezoelectric material for the face sheets, the stress- strain relations of the sandwich beam for core and 

face sheets are written as follows: 

 

 

𝜎𝑥𝑐𝑜𝑟𝑒 = 𝑄11𝑐𝑜𝑟𝑒𝜀𝑥𝑐𝑜𝑟𝑒  

(28) 
𝜏𝑥𝑧𝑐𝑜𝑟𝑒 = 𝑄55𝑐𝑜𝑟𝑒𝛾𝑥𝑐𝑜𝑟𝑒  

𝜎𝑥𝑖 = 𝑄11𝑖𝜀𝑥𝑖−𝑒31𝐸𝑧
𝑖                                                                                 (𝑖 = 𝑡𝑜𝑝, 𝑏𝑜𝑡𝑡𝑜𝑚) 

𝜏𝑥𝑧𝑖 = 𝑄55𝑖𝛾𝑥𝑖−𝑒15𝐸𝑧
𝑖  

 

where 𝑒ij, 𝑄𝑖𝑗 , 𝐸, 𝜀 and 𝜎 are piezoelectric stiffness, reduced stiffness coefficients, electric field, strain and stress, 

respectively. Reduced stiffness coefficients are related to Young's modulus and Poisson's ratio as follows: 

 

𝑄11 =
𝐸11

1 − 𝜈12𝜈21
 (29) 
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𝑄55 =
𝐸22

2(1 + 𝜈12)
= 𝐺12 

and also, the component electric field are defined in x and z directions as follows [48]: 

 

𝐸𝑧
𝑖 = −

𝜕𝜑𝑖
𝜕𝑧

                                                                                         (𝑖 = 𝑡𝑜𝑝, 𝑏𝑜𝑡𝑡𝑜𝑚)         

(30) 

𝐸𝑥
𝑖 = −

𝜕𝜑𝑖
𝜕𝑥

 

 

where 𝜙 is the electric potential and is defined as follows (considering top and bottom layers of sandwich beam as actuator 

and sensor, respectively [49]: 

 

𝜙𝑡𝑜𝑝 = 2
𝑧

ℎ𝑡
𝑉(𝑥, 𝑡) + [𝑧2 − (

ℎ𝑡
2
)
2

]𝜑0𝑡𝑜𝑝(𝑥, 𝑡) 

(31) 

𝜙𝑏𝑜𝑡𝑡𝑜𝑚 = [𝑧2 − (
ℎ𝑏
2
)
2

] 𝜑0𝑏𝑜𝑡𝑡𝑜𝑚(𝑥, 𝑡) 

 

and also, electric displacement is explained as follows [50]: 

 

𝐷𝑥
𝑖 = 𝑒15𝛾𝑥𝑧

𝑖 − 𝜂11𝐸𝑥
𝑖                                                                             (𝑖 = 𝑡𝑜𝑝, 𝑏𝑜𝑡𝑡𝑜𝑚) 

(32) 
𝐷𝑧
𝑖 = 𝑒31𝜀𝑥

𝑖 − 𝜂33𝐸𝑧
𝑖  

 

in which 𝐷 and 𝜂ij are electric displacement and dielectric coefficients, respectively. 

 

4. Hamilton’s principle 

The governing equations of micro sandwich beam on Kerr’s foundation under an external force are derived based on 

Hamilton’s principle as follows: 

 

∫ 𝛿(𝑇 − 𝑈 − 𝑉)𝑑𝑡 = 0
𝑡2

𝑡1

 (33) 

 

in which 𝛿𝑈, 𝛿𝑇 and 𝛿𝑉 represent strain energy, kinetic energy and external work variations, respectively. 

 

Due to the researched beam is in micro dimensions, modified couple stress theory (MCST) that consider the small scale 

parameter are used. Therefore, strain energy variation for core and layers of the micro sandwich beam is defined as 

follows: 

 

𝛿𝑈 = 𝛿𝑈𝑡𝑜𝑝 + 𝛿𝑈𝑐𝑜𝑟𝑒 + 𝛿𝑈𝑏𝑜𝑡𝑡𝑜𝑚

= ∫ (𝜎𝑥𝑥
𝑡𝑜𝑝
𝛿𝜀𝑥𝑥

𝑡𝑜𝑝
+ 𝜏𝑥𝑧

𝑡𝑜𝑝
𝛿𝛾𝑥𝑧

𝑡𝑜𝑝
− 𝐷𝑥

𝑡𝑜𝑝
𝛿𝐸𝑥

𝑡𝑜𝑝
− 𝐷𝑧

𝑡𝑜𝑝
𝛿𝐸𝑧

𝑡𝑜𝑝
+𝑚𝑖𝑗

𝑡𝑜𝑝
𝛿𝜒𝑖𝑗

𝑡𝑜𝑝
)

𝑉𝑡𝑜𝑝

𝑑𝑉𝑡𝑜𝑝

+ ∫ (𝜎𝑥𝑥
𝑐𝑜𝑟𝑒𝛿𝜀𝑥𝑥

𝑐𝑜𝑟𝑒 + 𝜏𝑥𝑧
𝑐𝑜𝑟𝑒𝛿𝛾𝑥𝑧

𝑐𝑜𝑟𝑒 +𝑚𝑖𝑗
𝑐𝑜𝑟𝑒𝛿𝜒𝑖𝑗

𝑐𝑜𝑟𝑒)
𝑉𝑐𝑜𝑟𝑒

𝑑𝑉𝑐𝑜𝑟𝑒

+∫ (𝜎𝑥𝑥
𝑏𝑜𝑡𝑡𝑜𝑚𝛿𝜀𝑥𝑥

𝑏𝑜𝑡𝑡𝑜𝑚 + 𝜏𝑥𝑧
𝑏𝑜𝑡𝑡𝑜𝑚𝛿𝛾𝑥𝑧

𝑏𝑜𝑡𝑡𝑜𝑚 − 𝐷𝑥
𝑏𝑜𝑡𝑡𝑜𝑚𝛿𝐸𝑥

𝑏𝑜𝑡𝑡𝑜𝑚 − 𝐷𝑧
𝑏𝑜𝑡𝑡𝑜𝑚𝛿𝐸𝑧

𝑏𝑜𝑡𝑡𝑜𝑚

𝑉𝑏𝑜𝑡𝑡𝑜𝑚

+𝑚𝑖𝑗
𝑏𝑜𝑡𝑡𝑜𝑚𝛿𝜒𝑖𝑗

𝑏𝑜𝑡𝑡𝑜𝑚) 𝑑𝑉𝑏𝑜𝑡𝑡𝑜𝑚 

(34) 
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in which 𝛾𝑥𝑧 , 𝜏𝑥𝑧 , 𝜀𝑥𝑥 and 𝜎𝑥𝑥 are shear, normal strains and stresses, respectively. 

 

Also, 𝑚𝑖𝑗and χ𝑖𝑗  are high-order stress tensor and symmetric rotation gradient tensor, respectively, which can be obtained 

as follows: 

 

𝑚𝑖𝑗 = 2𝐺𝑙2
2𝜒𝑖𝑗  

(35) 𝜒𝑖𝑗 =
1

2
(Θ𝑖,𝑗 + Θ𝑗,𝑖) 

Θ =
1

2
𝑐𝑢𝑟𝑙(u) 

in which Θ and u are infinitesimal rotation tensor  and displacement vector, respectively. The non-zero components of χ𝑖𝑗  
is state in the following form: 

 

𝜒𝑥𝑦 =
1

4
(𝜓,𝑥 − 𝑤,𝑥𝑥) (36) 

 

The kinetic energy variation for core and face sheets of the micro sandwich beam is stated as: 

 

𝛿𝑇 = ∫ 𝜌𝑡𝑜𝑝(�̇�
𝑡𝑜𝑝𝛿�̇�𝑡𝑜𝑝 + �̇�𝑡𝑜𝑝𝛿�̇�𝑡𝑜𝑝 + �̇�𝑡𝑜𝑝𝛿�̇�𝑡𝑜𝑝)

𝑉𝑡𝑜𝑝

𝑑𝑉𝑡𝑜𝑝  

+ (�̇�𝑐𝑜𝑟𝑒𝛿�̇�𝑐𝑜𝑟𝑒 + �̇�𝑐𝑜𝑟𝑒𝛿�̇�𝑐𝑜𝑟𝑒 + �̇�𝑐𝑜𝑟𝑒𝛿�̇�𝑐𝑜𝑟𝑒) 𝑑𝑉𝑐𝑜𝑟𝑒  

+ ∫ 𝜌𝑏𝑜𝑡𝑡𝑜𝑚(�̇�
𝑏𝑜𝑡𝑡𝑜𝑚𝛿�̇�𝑏𝑜𝑡𝑡𝑜𝑚 + �̇�𝑏𝑜𝑡𝑡𝑜𝑚𝛿�̇�𝑏𝑜𝑡𝑡𝑜𝑚 + �̇�𝑏𝑜𝑡𝑡𝑜𝑚𝛿�̇�𝑏𝑜𝑡𝑡𝑜𝑚)

𝑉𝑏𝑜𝑡𝑡𝑜𝑚

𝑑𝑉𝑏𝑜𝑡𝑡𝑜𝑚 

(37) 

 

where �̇�, �̇�, �̇�, 𝑉  and 𝜌 are the micro sandwich beam's velocities in the x, y, and z directions, volume and density, 

respectively. 

 

The external work includes two parts of the external force and the elastic medium, which are harmonic force and Kerr’s 

foundation, respectively, which are expressed as follows: 

 

𝛿𝑉 = ∫ (𝐹𝑒𝑙𝑎𝑠𝑡𝑖𝑐 − 𝐹𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙)𝛿𝑤
𝐴

0

𝑑𝐴 (38) 

 

The resulting force from Kerr’s foundation is stated as follows [51, 52]:  

 

𝐹𝑒𝑙𝑎𝑠𝑡𝑖𝑐 =
𝑘𝑡

𝑘𝑡 + 𝑘𝑏
(𝑘𝑏𝑤 − 𝑘𝐺

𝜕2𝑤

𝜕𝑥2
) (39) 

 

in which 𝑘𝑡 , 𝑘𝑏 and 𝑘𝐺 are top spring, bottom spring and shear layer constants, respectively. Eq. (39) has obtained with 

details in Appendix A. Also, the resulting force from harmonic force is written as follows: 

 

𝐹𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 = 𝑓0𝑠𝑖𝑛Ω𝑡 (40) 

 

where 𝑓0  and Ω are value of force and excited frequency, respectively. 
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The motion equations of the micro sandwich beam are derived based on MCST and Timoshenko beam theory. By 

substituting Eqs. (34)-(40) into Eq. (33), the motion equations of core are obtained as follows: 

 

𝛿𝜓:−𝐼(2)�̈� + 𝐵(2)𝜓,𝑥𝑥 − 𝑘𝑠𝐶
(0)(𝜓 + 𝑤,𝑥) +

1

8
𝐺(0)(𝜓,𝑥𝑥 −𝑤,𝑥𝑥𝑥) = 0 (41) 

𝛿𝑤:−𝐼(0)�̈� + 𝑘𝑠𝐶
(0)(𝜓,𝑥 + 𝑤,𝑥𝑥) +

1

8
𝐺(0)(𝜓,𝑥𝑥𝑥 −𝑤,𝑥𝑥𝑥𝑥) −

𝑘𝑡
𝑘𝑡 + 𝑘𝑏

(𝑘𝑏𝑤 − 𝑘𝐺𝑤,𝑥𝑥) = 𝑓0𝑠𝑖𝑛𝛺𝑡 (42) 

 

 Also, considering the top face sheet as actuator, the motion equations of top face sheet are written as follows: 

 

𝛿𝜓:−𝐼(2)�̈� + 𝐵(2)𝜓,𝑥𝑥 − 𝑘𝑠𝐶
(0)(𝜓 + 𝑤,𝑥) +

1

8
𝐺(0)(𝜓,𝑥𝑥 −𝑤,𝑥𝑥𝑥) + 2𝑅

(2)𝜑0
𝑡
,𝑥
+ 2𝑅(2)𝜑0

𝑏
,𝑥
= 0 (43) 

𝛿𝑤:−𝐼(0)�̈� + 𝑘𝑠𝐶
(0)(𝜓,𝑥 + 𝑤,𝑥𝑥) +

1

8
𝐺(0)(𝜓,𝑥𝑥𝑥 −𝑤,𝑥𝑥𝑥𝑥) −

𝑘𝑡
𝑘𝑡 + 𝑘𝑏

(𝑘𝑏𝑤 − 𝑘𝐺𝑤,𝑥𝑥) = 𝑓0𝑠𝑖𝑛𝛺𝑡 (44) 

𝜑0
𝑡 : 𝑇(2)(𝜓,𝑥 + 𝑤,𝑥𝑥) + (𝑃

(4) − (
ℎ𝑡
2
)
2

𝑃(2))𝜑0
𝑡
,𝑥𝑥
− (

ℎ𝑡
2
)
2

𝑇(0)(𝜓,𝑥 + 𝑤,𝑥𝑥) + (
ℎ𝑡
2
)
4

𝑃(0)𝜑0
𝑡
,𝑥𝑥
− 2𝑅(1)𝑢,𝑥

− 2𝑅(2)𝜓,𝑥 − 4𝑂
(2)𝜑0

𝑡 =
4

ℎ𝑡
𝑂(1)𝑉 

(45) 

 

and considering the bottom face sheet as sensor, the motion equations of bottom face sheet are written as follows: 

 

𝛿𝜓:−𝐼(2)�̈� + 𝐵(2)𝜓,𝑥𝑥 − 𝑘𝑠𝐶
(0)(𝜓 + 𝑤,𝑥) +

1

8
𝐺(0)(𝜓,𝑥𝑥 −𝑤,𝑥𝑥𝑥) + 2𝑅

(2)𝜑0
𝑏
,𝑥
= 0 (46) 

𝛿𝑤:−𝐼(0)�̈� + 𝑘𝑠𝐶
(0)(𝜓,𝑥 + 𝑤,𝑥𝑥) +

1

8
𝐺(0)(𝜓,𝑥𝑥𝑥 −𝑤,𝑥𝑥𝑥𝑥) −

𝑘𝑡
𝑘𝑡 + 𝑘𝑏

(𝑘𝑏𝑤 − 𝑘𝐺𝑤,𝑥𝑥) = 𝑓0𝑠𝑖𝑛𝛺𝑡 (47) 

𝜑0
𝑏: 𝑇(2)(𝜓,𝑥 + 𝑤,𝑥𝑥) + (𝑃

(4) − (
ℎ𝑏
2
)
2

𝑃(2))𝜑0
𝑏
,𝑥𝑥
− (

ℎ𝑏
2
)
2

𝑇(0)(𝜓,𝑥 + 𝑤,𝑥𝑥) + (
ℎ𝑏
2
)
4

𝑃(0)𝜑0
𝑏
,𝑥𝑥
− 2𝑅(1)𝑢,𝑥

− 2𝑅(2)𝜓,𝑥 − 4𝑂
(2)𝜑0

𝑏 = 0 

(48) 

 

in which superscript t and b indicate to top and bottom layers, respectively and also, 𝐼(𝑖), 𝐵(𝑖), 𝐶(𝑖), 𝐺(𝑖), 𝑅(𝑖), 𝑂(𝑖) and 

𝑇(𝑖) are defined: 

 

𝐼(𝑖) = ∫𝜌 𝑧(𝑖)𝑑𝑧                         𝑖 = (0, … ,6) 

(49) 

𝐵(𝑖) = ∫𝑄11 𝑧
(𝑖)𝑑𝑧                    𝑖 = (0, … ,6) 

𝐶(𝑖) = ∫𝑄66 𝑧
(𝑖)𝑑𝑧                     𝑖 = (0, … ,6) 

𝐺(𝑖) = ∫2𝜇 𝑙2
2𝑧(𝑖)𝑑𝑧                   𝑖 = (0, … ,6) 

𝑅(𝑖) = ∫𝑒31 𝑧
(𝑖)𝑑𝑧                     𝑖 = (0, … ,6) 

𝑂(𝑖) = ∫𝜂33 𝑧
(𝑖)𝑑𝑧                    𝑖 = (0, … ,6) 
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𝑇(𝑖) = ∫𝑒15 𝑧
(𝑖)𝑑𝑧                    𝑖 = (0, … ,6) 

 

5. Solution method and control system  

The Navier’s solution is used to solve the motion equations of the Timoshenko’s sandwich micro beam with simply 

supported obtained as follows: 

 

 

𝜓(𝑥, 𝑡) = ∑Ψ0(𝑡) cos
𝑛𝜋𝑥

𝐿

∞

𝑛=1

 

(50) 

𝑤(𝑥, 𝑡) = ∑𝑊0(𝑡) sin
𝑛𝜋𝑥

𝐿

∞

𝑛=1

 

𝜙𝑡(𝑥, 𝑡) = ∑Φ𝑡(𝑡) sin
𝑛𝜋𝑥

𝐿

∞

𝑛=1

 

𝜙𝑏(𝑥, 𝑡) = ∑Φ𝑏(𝑡) sin
𝑛𝜋𝑥

𝐿

∞

𝑛=1

 

but, an approach solution is assumed for clamped boundary conditions as follows [7]: 

𝜓(𝑥, 𝑡) = ∑Ψ0(𝑡)𝑓(𝑥)

∞

𝑛=1

 

(51) 

𝑤(𝑥, 𝑡) = ∑𝛼𝑊0(𝑡)�́�(𝑥)

∞

𝑛=1

 

𝜙𝑡(𝑥, 𝑡) = ∑𝛼Φ𝑡(𝑡)�́�(𝑥)

∞

𝑛=1

 

𝜙𝑏(𝑥, 𝑡) = ∑𝛼Φ𝑏(𝑡)�́�(𝑥)

∞

𝑛=1

 

where 𝛼 =
−1

2𝜆𝑛
 and 𝑓(𝑥) is defined as follows: 

𝑓(𝑥) = cos2(𝜆𝑛𝑥) , 𝜆𝑛 =
𝑛𝜋

𝐿
                                                                                                                                           (52) 

 

 Therefore, the equation obtained in matrix form are written as follows: 

 

[M]{Ẍ} + [K]{X} = −[Kv]V + [Kf]f (53) 

 

 where V and f are the applied voltage and force, f is set equal to 𝑓0𝑠𝑖𝑛Ω𝑡 and also the vectors Kv, Kf and X are expressed 

as follows: 

 

Kf = {

0
−1
0
0

} , Kv =

{
 
 

 
 

0
0

−
4

ht
O(1)

0 }
 
 

 
 

, X = {

ψ
w
φt

φb

} (54) 
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M and K are mass and stiffness matrices for S-S boundary conditions, respectively and the non-zero components 𝑚𝑖𝑗 and 

𝑘𝑖𝑗  are written as follows: 

 

𝑚11 = −𝐼(2) 
(55) 

𝑚22 = −𝐼
(0) 

𝑘11 = −(
𝑛𝜋

𝑙
)
2

𝐵(2) − 𝑘𝑠𝐶
(0) −

1

8
(
𝑛𝜋

𝑙
)
2

𝐺(0) 

(56) 

𝑘12 = 𝑘12 = −(
𝑛𝜋

𝑙
) 𝑘𝑠𝐶

(0) +
1

8
(
𝑛𝜋

𝑙
)
3

𝐺(0) 

𝑘13 = 𝑘31 = 2(
𝑛𝜋

𝑙
) 𝑅(2) − 𝑘𝑠 (

𝑛𝜋

𝑙
) 𝑇(2) + 𝑘𝑠 (

ℎ𝑡
2
)
2

(
𝑛𝜋

𝑙
) 𝑇(0) 

𝑘14 = 𝑘41 = 2(
𝑛𝜋

𝑙
) 𝑅(2) − 𝑘𝑠 (

𝑛𝜋

𝑙
) 𝑇(2) + 𝑘𝑠 (

ℎ𝑏
2
)
2

(
𝑛𝜋

𝑙
) 𝑇(0) 

𝑘22 = −(
𝑛𝜋

𝑙
)
2

𝑘𝑠𝐶
(0) +

1

8
(
𝑛𝜋

𝑙
)
4

𝐺(0) −
𝑘𝑡

𝑘𝑡 + 𝑘𝑏
(𝑘𝑏 + 𝑘𝐺 (

𝑛𝜋

𝑙
)
2

) 

𝑘23 = 𝑘32 = −𝑘𝑠 (
𝑛𝜋

𝑙
)
2

𝑇(2) + 𝑘𝑠 (
ℎ𝑡
2
)
2

(
𝑛𝜋

𝑙
)
2

𝑇(0) 

𝑘24 = 𝑘42 = −𝑘𝑠 (
𝑛𝜋

𝑙
)
2

𝑇(2) + 𝑘𝑠 (
ℎ𝑏
2
)
2

(
𝑛𝜋

𝑙
)
2

𝑇(0) 

𝑘33 = −𝑘𝑠 (
𝑛𝜋

𝑙
)
2

𝑃(4) + 𝑘𝑠
ℎ𝑡
2

2
(
𝑛𝜋

𝑙
)
2

𝑃(2) − 𝑘𝑠 (
ℎ𝑡
2
)
4

(
𝑛𝜋

𝑙
)
2

𝑃(0) − 4𝑂(2) 

𝑘44 = −𝑘𝑠 (
𝑛𝜋

𝑙
)
2

𝑃(4) + 𝑘𝑠
ℎ𝑏

2

2
(
𝑛𝜋

𝑙
)
2

𝑃(2) − 𝑘𝑠 (
ℎ𝑏
2
)
4

(
𝑛𝜋

𝑙
)
2

𝑃(0) − 4𝑂(2) 

 

Also, the motion equations of active vibration control in the state-space are expressed as following form [53]: 

 

ℒ = (
𝑋
�̇�
) , ℒ̇ = (�̇�

�̈�
) 

(57) 

�̈� = 𝑀−1 × [−K𝑋 + 𝐾𝑣𝑉 + 𝐾𝑓𝑓] 

ℒ̇ = [
02×2 𝐼2×2

−𝑀−1𝐾 02×2
] ℒ + [

02×2
𝑀−1𝐾𝑣

] 𝑉 + [
02×2
𝑀−1𝐾𝑓

] 𝑓 

{ℒ̇ = 𝐴ℒ + 𝐵𝑉 + 𝐶𝑓
𝑌 = 𝐷ℒ

 

 

Therefor 

 

𝐴 = [
02×2 𝐼2×2

−𝑀−1𝐾 02×2
] 

𝐵 = [
02×2

−𝑀−1K𝑣
] 

𝐶 = [
02×2
𝑀−1𝐾𝑓

] 
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 𝐷 = [
cos

𝑛𝜋𝑥

𝐿

0

0

sin
𝑛𝜋𝑥

𝐿

0
0

0
0
] 

To control the vibration of structure, due to the linearity of the state-space equations, state-feedback controller is 

determined based on LQR. The optimal actuator voltage is obtained based on LQR approach, therefore the cost function 

include voltage is determined as follows [54]: 

 

𝐽 =
1

2
∫(ℒ𝑇𝑄ℒ + V𝑇𝑅V)𝑑𝑡

∞

0

 (1) 

 

in which R and Q are weight matrix that are positive-definite and positive semi-definite, respectively. The optimal voltage 

and state-feedback gain matrix are written as following form [55]: 

 

V = −Gv × ℒ (2) 

𝐺𝑣 = 𝑅
−1𝐵𝑇𝑃 (3) 

 

To optimal state-space gain matrix, P is obtained from solving the algebraic Riccati equation as follows [56]: 

 

𝐴𝑇𝑃 + 𝑃𝐴 − 𝑃𝐵𝑅−1𝐵𝑇𝑃 + 𝑄 = 0 (4) 

 

6. Validation and numerical result 

6.1. Validation 

Three modes of dimensionless natural frequency of Timoshenko micro beam are compared by Akgöz and Civalek 

[57] and the results are presented in Table 1, Table 2 and Table 3. For this purpose, a simply supported Timoshenko micro 

beam is considered with rectangular cross-section (shear correction factor is 𝑘𝑠 = 5 6⁄ ) and for different length to 

thickness ratio (𝐿 ℎ⁄ = 10, 30 𝑎𝑛𝑑 100), the width to thickness ratio is constant (𝑏 ℎ⁄ =2). The Timoshenko micro beam 

is considered based on MCST, and material properties and length scale parameter are as follows [57]: 

 

𝐸 = 1.44 𝐺𝑝𝑎, 𝜌 = 1220 
𝑘𝑔

𝑚3⁄  , 𝜈 = 0.3 , 𝑙2 = 17.6 𝜇𝑚 (5) 

 

As a reminder, the MSCT will be turned into the CT if the material length parameter is equal zero. As shown in the 

Table 1, Table 2 and Table 3, for all of length to thickness ratio (𝐿 ℎ⁄ = 10, 30 𝑎𝑛𝑑 100) and three of thickness to small 

scale parameter (ℎ 𝑙⁄ = 1, 5 𝑎𝑛𝑑 10) and also, for three modes of first dimensionless natural frequency in CT and MCST, 

the present work have very high agreement with literature and the error is approximately near to zero. Thus it is shown 

that the obtained equations of present work have good accuracy. 

 

Table 1. Comparison of first mode dimensionless natural frequency of Timoshenko beam theory (TBT) based classical theory (CT) and 

Modified couple stress theory (MCST) (�̅� = 𝝎𝟏𝑳
𝟐√𝝆𝑨 𝑬𝑰⁄ ). 

𝒉
𝒍⁄  Theory  𝑳

𝒉⁄ =10 𝑳
𝒉⁄ =30 𝑳

𝒉⁄ =100 

1 

CT 
Bekir Akgöz [57] 13.1232 13.4595 13.4996 

Present work 13.123178 13.459454 13.499630 

MCST 
Bekir Akgöz [57] 23.7053 24.5061 24.6045 

Present work 23.705256 24.506058 24.604512 

5 

CT 
Bekir Akgöz [57] 13.1232 13.4595 13.4996 

Present work 13.123178 13.459454 13.499630 

MCST 
Bekir Akgöz [57] 13.7192 14.0707 14.1128 

Present work 13.719171 14.070713 14.112778 

10 CT 
Bekir Akgöz [57] 13.1232 13.4595 13.4996 

Present work 13.123178 13.459454 13.499630 
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MCST 
Bekir Akgöz [57] 13.2748 13.6149 13.6555 

Present work 13.274809 13.614857 13.655500 

 

 

 

Table 2. Comparison of second mode dimensionless natural frequency of Timoshenko beam theory (TBT) based classical theory (CT) and 

Modified couple stress theory (MCST) (�̅� = 𝝎𝟏𝑳
𝟐√𝝆𝑨 𝑬𝑰⁄ ) 

𝒉
𝒍⁄  Theory  𝑳

𝒉⁄ =10 𝑳
𝒉⁄ =30 𝑳

𝒉⁄ =100 

1 

CT 
Bekir Akgöz [57] 48.6751 53.3195 53.9507 

Present work 48.675128 53.319531 3.950666 

MCST 
Bekir Akgöz [57] 86.4924 96.7708 98.3005 

Present work 86.492440 96.770790 98.300516 

5 

CT 
Bekir Akgöz [57] 48.6751 53.3195 53.9507 

Present work 48.675128 53.319531 3.950666 

MCST 
Bekir Akgöz [57] 50.9056 55.7406 56.4010 

Present work 50.905625 55.740590 56.401002 

10 

CT 
Bekir Akgöz [57] 48.6751 53.3195 53.9507 

Present work 48.675128 53.319531 3.950666 

MCST 
Bekir Akgöz [57] 49.2437 53.9352 54.5736 

Present work 49.243735 53.935218 54.573587 

 

 

 

 

Table 3. Comparison of third mode dimensionless natural frequency of Timoshenko beam theory (TBT) based classical theory (CT) and 

Modified couple stress theory (MCST) (�̅� = 𝝎𝟏𝑳
𝟐√𝝆𝑨 𝑬𝑰⁄ ) 

𝒉
𝒍⁄  Theory  𝑳

𝒉⁄ =10 𝑳
𝒉⁄ =30 𝑳

𝒉⁄ =100 

1 

CT 
Bekir Akgöz [57] 98.8865 118.1086 121.2103 

Present work 98.886538 118.108608 121.210274 

MCST 
Bekir Akgöz [57]  174.0724 213.3473 220.7383 

Present work 174.072424 213.347312 220.738314 

5 

CT 
Bekir Akgöz [57] 98.8865 118.1086 121.2103 

Present work 98.886538 118.108608 121.210274 

MCST 
Bekir Akgöz [57]  103.5636 123.4725 126.7151 

Present work 103.563559 123.472540 126.715135 

10 

CT 
Bekir Akgöz [57]  98.8865 118.1086 121.2103 

Present work 98.886538 118.108608 121.210274 

MCST 
Bekir Akgöz [57]  100.0818 119.4733 122.6098 

Present work 100.081806 119.473282 122.609772 

 

6.2. Numerical results 

The material properties, dimension, and elastic foundation of Timoshenko micro sandwich beam with three-phase 

nanocomposite/piezoelectric/resin as face sheet, which are top and bottom face sheet as actuator and sensor, respectively, 

as follows [31, 45, 58]: 
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𝐸𝑐𝑜𝑟𝑒 = 115 𝐺𝑝𝑎, 𝜈𝑐𝑜𝑟𝑒 = 0.3, 𝜌𝑐𝑜𝑟𝑒 = 199
𝑘𝑔

𝑚3⁄ , 𝐸𝑟𝑒𝑠𝑖𝑛 = 2.72 𝐺𝑝𝑎, 𝜌𝑟𝑒𝑠𝑖𝑛 = 1200 
𝑘𝑔

𝑚3⁄  , 𝜈𝑟𝑒𝑠𝑖𝑛

= 0.33 , 𝐸11𝑃𝑉𝐷𝐹 = 238 𝐺𝑝𝑎, 𝐸22𝑃𝑉𝐷𝐹 = 23.6 𝐺𝑝𝑎, 𝜌𝑃𝑉𝐷𝐹 = 1750 
𝑘𝑔

𝑚3⁄  , 𝜈𝑃𝑉𝐷𝐹

= 0.18, 𝑒31 = −0.13
𝐶
𝑚2⁄  , 𝑒15 = −0.01

𝐶
𝑚2⁄ , 𝜂11 = 11.0625 × 10−9  𝐶

2

𝑁𝑚2⁄ , 𝜂33

= 10.6023 × 10−9 𝐶
2

𝑁𝑚2⁄ , 𝑉𝑃𝑉𝐷𝐹 = 0.55, 𝐸𝐶𝑁𝑇 = 640 𝐺𝑝𝑎, 𝜌𝐶𝑁𝑇 = 1350 
𝑘𝑔

𝑚3⁄ , 𝜈𝐶𝑁𝑇

= 0.33, 𝑡𝐶𝑁𝑇 = 0.34 𝑛𝑚, 𝑑𝐶𝑁𝑇 = 1.4 𝑛𝑚, 𝑙𝐶𝑁𝑇 = 25 𝜇𝑚, 𝐸𝐺𝑃𝐿 = 1010 𝐺𝑝𝑎, 𝜌𝐺𝑃𝐿

= 1060 
𝑘𝑔

𝑚3⁄ , 𝜈𝐺𝑃𝐿 = 0.186, 𝑤𝐺𝑃𝐿 = 1.5 𝜇𝑚, ℎ𝐶𝑁𝑇 = 1.5 𝑛𝑚, 𝑙𝐺𝑃𝐿 = 2.5 𝜇𝑚, 𝑙2

= 17.6 𝜇𝑚, ℎ𝑡 = ℎ𝑏 = 0.1ℎ, 𝐿 = 8ℎ, ℎ = 2𝑙2, 𝑏 =
1
4⁄ ℎ 

(6) 

 

Also, the properties material of CNR is obtained from the following temperature-dependent relationship [44]: 

 

𝐸11𝐶𝑁𝑅 = 0.76798 − 5.2061 × 10−4𝑇 + 8.916 × 10−7𝑇2 − 0.535 × 10−9𝑇3 𝑇𝑝𝑎 

𝐸22𝐶𝑁𝑅 = 0.962586 − 6.50445 × 10−4𝑇 + 11.13 × 10−7𝑇2 − 0.6675 × 10−9𝑇3 𝑇𝑝𝑎 

𝜌𝐶𝑁𝑅 = 1550 
𝑘𝑔

𝑚3⁄ , 𝜈𝐶𝑁𝑅 = 0.19 

(7) 

 

In this research, the material properties of CNR is considered in environment temperature (3000𝐾).  
 

In order to investigate the effect of various types of nanocomposites on the active control of forced vibrations of 

Timoshenko’s sandwich micro beam under harmonic force, three types of nanocomposites CNT, CNR and GPL are 

considered for face sheets with different volume fractions. Also, excitation frequency and value of harmonic force for all 

of results is assumed as the first natural frequency and 0.01N, respectively. Fig.2a,b illustrates the frequency response of 

forced vibration and deflection response and settling time for various volume fractions of Timoshenko’s micro sandwich 

beam, respectively. As seen in Fig.2 by increasing volume fraction, the frequency is increased and deflection is decreased. 

Also, settling time is decreased and oscillations reduction is occurred earlier. 

 

 

 

(a) 
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(b) 

Fig.2. a) Frequency response of forced vibration and b) Settling time of various CNT volume fractions of Timoshenko’s sandwich micro beam  

In optimal control, the system can be controlled by optimizing its variables, the optimized variable or function is called 

the cost function and minimizing the cost function can control system inputs. The cost function is the square of system 

state variables and control inputs. Therefore, the cost function is defined as equation (58) and considering the weight 

matrices R and Q, respectively positive-definite and positive semi-definite, the cost function is non-negative and its 

minimum value becomes zero. Thus, the state variables and control inputs tend to zero, which is favorable for the studied 

system. The values considered for Q and R express the importance of state variables and control inputs. According to the 

importance of each variable and, a weight factor is considered, and each variable that is more important in the optimization 

problem has a higher weight factor. In the desired system, which is a Timoshenko’s micro sandwich beam reinforced 

nanocomposite integrated by piezoelectric layers, their selection depends on the characteristics of the system, where R 

can be considered as a unit step and Q is proportional to the mass and stiffness matrices. Then using solving the algebraic 

Riccati equation by MATLAB software, optimum control gain is obtained and the control input is also optimized. 

Dimensionless deflection versus frequency and deflection versus time of Timoshenko’s micro sandwich beam with 

foam core and GPLs reinforced composite integrated by piezoelectric (PVDF) as face sheets are showed in Fig.3a,b. As 

can be seen, increasing the volume fraction of GPLs increases the natural frequency and decreases the deflection 

amplitude and settling time. 

 

 

(a) 
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(b) 

Fig.3. a) Frequency response of forced vibration and b) Settling time of various GPL volume fractions of Timoshenko’s sandwich micro beam  

 

Fig.4a,b indicates resonance frequency and deflection of Timoshenko’s micro sandwich beam for various volume 

fractions of CNR. It shows that with the increase of the volume fraction, the natural frequency increases and the deflection 

decreases, and as a result, the vibrations of the structure are suppressed faster. 

 

 

 

(a) 
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(b) 

Fig.4. a) Frequency response of forced vibration and b) Settling time of various CNR volume fractions of Timoshenko’s sandwich micro beam  

 

By comparing Fig.2, Fig.3 and Fig.4, it can be seen that in three type of nanocomposite reinforced by CNT, GPL and 

CNR, the natural frequency increases with the increase in volume fraction of nanocomposites. It is clearly evident that 

since the nanocomposites have a high modulus of elasticity and increasing volume fraction increases the stiffness of the 

structure, therefore the natural frequency which depends on the stiffness increases. Also, increasing volume fraction of 

nanocomposite and stiffness of Timoshenko’s micro sandwich beam decreases the amplitude of the deflection center 

point, so attenuation of the deflection response becomes faster. 

 

Now, after analysis of deflection response and settling time of various volume fractions of nanocomposite reinforced, 

the frequency and deflection response of nanocomposite reinforced of CNT, GPL and CNR are analyzed to find the 

nanocomposite reinforced with the shortest settling time of the Timoshenko’s micro sandwich beam. Fig.5a,b, 

respectively, display forced vibrations and deflection response of three type of nanocomposite reinforced for a 

Timoshenko’s micro sandwich beam that face sheets are reinforced with nanocomposites (CNT or GPL or CNR) 

integrated by piezoelectric for volume fraction 1%. As can be seen, the natural frequency of CNT is less than CNR and 

GPL, respectively. Also, vibrations damping and settling time of GPL is faster than CNR and CNT, respectively.  
 

 

(a) 
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(b) 

Fig.5. a) Frequency response of forced vibration and b) deflection response of three type of CNT/GPL/CNR reinforced nanocomposite for 

Timoshenko’s sandwich micro beam  

 

According to the natural frequency is depends on stiffness and in this research, Young modulus of CNT is lower than 

CNR and GPL, respectively. Therefore, Timoshenko’s micro beam that are reinforced CNT nanocomposite integrated by 

piezoelectric as face sheet and foam core has lower natural frequency. Also, structure with more stiffness has less 

deflection. Therefore, the amplitude of the center point deflection and settling time for Timoshenko’s sandwich micro 

beam with GPL reinforced is lower and earlier than the other two nanocomposites, respectively. 

 

The First three natural frequencies of various nanocomposite reinforcements (CNT, GPL and CNR) with various volume 

fractions for Timoshenko’s micro sandwich beam are shown in Table 4a,b. In realistic scenarios, it has been shown that 

the presence of nanocomposites in the structure significantly increases in flexural modulus, Young’s modulus and inter-

laminar shear strength [59]. Also, in the experimental studies, fracture-mechanical properties are investigated, it has been 

shown that the addition of a small amount of nanocomposite is significantly improved strain to failure and fracture 

toughness [60]. It has also been shown in other studies that with the increase in volume fraction of nanocomposites and 

natural frequency modes, the value of critical buckling load increases [8]. Therefore, Table 4b shows the effect of 

increasing the different volume fractions (1, 2 and 5) on the first natural frequency modes are compared to without 

considering reinforcement. As can be seen, for CNT nanocomposite with increasing of volume fraction up to 1%, the first 

mode of natural frequency is increased by about 27.6%, which is by about 82.4% for GPL and by about for 67% CNR. 

Also, by increasing volume fraction up to 1%, the second mode of natural frequency is increased by about 28.9% for 

CNT, 85.8% for GPL and 69.9% for CNR and also, the third mode of natural frequency is increased by about 30%, 88.6% 

and 72.3% for CNT, GPL and CNR, respectively. For Timoshenko’s micro sandwich beam with CNT reinforced 

integrated by piezoelectric, the second and third modes of natural frequency of the various volume fractions (1%, 2% and 

5%) are increased by about 3.5 and 6.6 times, respectively, compared to the first mode of natural frequency, which are by 

about 3.5 and 6.7 times for GPL and 3.5 and 6.7 for CNR. As a result, for the volume fraction 1%, 2% and 5%, the second 

and third modes of natural frequency increase the frequency with a constant amount for three nanocomposite CNT, GPL 

and CNR. 

Individual influence of CNT, GPL, and CNR on first three natural frequency of Timoshenko’s micro sandwich beam for 

various volume fraction of nanocomposite reinforcements is shown in Table 4a. By comparing the first and second 

columns of Table 4a, by adding 1% nanocomposite (CNT, CNR and GPL), the stiffness of the structure increases and as 

a result the natural frequency increases. Also, in Table 4b, it is shown that with increasing of 1% reinforcements 

(CNT,GPL, and CNR), the natural frequency enhances 27.61%, 82.41%, and 67.04% for first natural frequency, 

respectively. On the other hands, the effect of GPL on the natural frequency is higher than other reinforcemnts.  Individual 

influence of nanocomposites on damping characteristics is indicated in Fig 6. As can be seen, by adding CNT to 

Timoshenko’s micro sandwich beam, the stiffness of structure is increased and as a result amplitude of deflection is 

reduced and a faster settling time is obtained. 
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Table 4. a) Comparison of first three natural frequency modes of Timoshenko’s micro sandwich beam for various volume fraction of 

nanocomposite reinforcements. 

Natural frequencies modes (KHz) Nanocomposite 

 Volume fractions 

Without 

considering 

reinforcement 

1% 2% 5% 

1st mode 

CNT 509.7700 650.4932 765.4926 1035.9495 

GPL 509.7700 929.8766 1212.8146 1817.2365 

CNR 509.7700 851.5180 1090.3433 1602.7200 

2nd  mode 

CNT 1730.5131 2231.1110 2636.7761 3585.5724 

GPL 1730.5131 3214.6215 4205.6336 6318.8759 

CNR 1730.5131 2939.6985 3777.2872 5569.9761 

3rd mode 

CNT 3271.2166 4253.0795 5044.3388 6887.5101 

GPL 3271.2166 6168.6256 8091.5053 12186.0939 

CNR 3271.2166 5634.5413 7261.4473 10737.2181 

b) The effect of enhancement percentage for different volume fractions on the first three natural frequency compared to the case without 

considering reinforcement 

Natural frequencies modes (KHz) Nanocomposite 

 Volume fractions 

Without 

considering 

reinforcement 

1% 2% 5% 

1st mode 

CNT 509.7700 27.61% 50.16% 103.22% 

GPL 509.7700 82.41% 137.91% 256.48% 

CNR 509.7700 67.04% 113.89% 214.40% 

2nd  mode 

CNT 1730.5131 28.93% 52.37% 107.20% 

GPL 1730.5131 85.76% 143.03% 265.14% 

CNR 1730.5131 69.87% 118.28% 221.87% 

3rd mode 

CNT 3271.2166 30.02% 54.20% 110.55% 

GPL 3271.2166 88.57% 147.35% 272.52% 

CNR 3271.2166 72.25% 121.98% 228.23% 

 

 

 
(a) 
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(b) 

Fig.6. Influence adding of CNT on a) settling time and b) the phase trajectory of Timoshenko’s micro sandwich beam 

 

In the following, the active vibrations control of Timoshenko’s micro sandwich beam with foam as core and CNR 

reinforced integrated by piezoelectric as face sheets on Kerr’s foundation is investigated and the effects of top and bottom 

springs and shear layer constant on forced frequency response and settling time for volume fraction 1% is indicated in 

Fig.7a,b. Also, springs coefficient and shear layer constant are considered dimensionless as following form: 

 

𝑘𝑡
∗ =

𝑘𝑡𝐿

𝐵(0)
 (8) 

𝑘𝑏
∗ =

𝑘𝑏𝐿

𝐵(0)
 (9) 

𝑘𝐺
∗ =

𝑘𝐺

𝐵(0)𝐿
 (10) 

 

and  𝑘𝑡
∗ , 𝑘𝑏

∗  and 𝑘𝐺
∗  are considered equal to 1000, 1000 and 100. 

As reminder, according to equation of Kerr’s foundation (39), foundation is Pasternak if 𝑘𝑡 tend to infinity, foundation 

is Winkler if 𝑘𝑡 tend to infinity and 𝑘𝐺 to be zero, structure is without foundation if 𝑘𝑏 and 𝑘𝐺  to be zero (here without 

foundation means simply support) [61]. 

 

As can be seen in Fig.7a, natural frequency of Pasternak foundation is more than Kerr foundation and Winkler 

foundation and without foundation, respectively. Fig.7b displays that the amplitude of center point deflection of Pasternak 

foundation is greater than Kerr, Winkler and without foundation and also settling time of Pasternak foundation is slower. 

Due to related Kerr foundation, for same spring coefficient, spring coefficient of Kerr foundation is less than Pasternak, 

therefore, stiffness of structure on Pasternak foundation is clearly more than Kerr foundation, Winkler and without 

foundation. In result, the frequency response and settling time of Pasternak foundation are larger and slower, respectively. 

Therefore, for active control of Timoshenko’s micro sandwich beam, the Kerr foundation is better than Pasternak 

foundation. As a general result, it can be stated that increasing the stiffness of structure increases the frequency response 

and decreases the settling time and the transient response of deflection. 

 



34 Mohammadjavad Jafari and Mehdi Mohammadimehr 

 

(a) 

 

(b) 

Fig.7. a) Frequency response of forced vibration and b) deflection response of Timoshenko’s sandwich micro beam on various foundation 

 

Table 5 shows the first, second and third mode of natural frequency of Timoshenko’s micro sandwich beam with CNR 

reinforced nanocomposite integrated by piezoelectric on Kerr foundation, where the three parameters of foundation (𝑘𝑡, 
𝑘𝑏 and 𝑘𝑔) are varied. the first, second and third mode of natural frequency of the Kerr foundation is increased by about 

46%, 13.1% and 7.7%, respectively, compared to without foundation and by about 10%, 9.7% and 6.8%, respectively, 

compared to Winkler foundation. Also, the first, second and third mode of natural frequency of the Kerr foundation are 

decreased by about 8.6%, 1.2% and 0.3%, respectively, compared to Pasternak foundation. 
 

Table 5. Comparison of three natural frequency modes for various foundation of Timoshenko’s micro sandwich beam with CNR reinforced 

integrated by piezoelectric (Volume fraction of CNR=1%) 

Natural frequency modes (KHz) Kerr Pasternak Winkler Without foundation 

1st mode 1243.0074 1349.3600 1129.8420 851.5180 

2nd mode 3323.9479 3364.3886 3030.3549 2939.6985 

3rd mode 6067.5883 6089.7916 5682.2842 5634.5413 

 

Fig.8a,b shows dimensionless deflection versus frequency and deflection versus time of three modes of  natural 

frequency for Timoshenko’s micro sandwich beam on Kerr’s foundation with face sheets are reinforced by CNR 

integrated by piezoelectric. In the forced vibration response for volume fraction 1%, the natural frequency increases with 
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increasing mode of natural frequency. Also, by increasing mode of natural frequency, the amplitude of deflection is 

increased and damping of vibrations is delayed.  

 

 

(a) 

 

(b) 

Fig.8. a) Frequency response of forced vibration and b) deflection response of Timoshenko’s sandwich micro beam for three modes of natural 

frequency 

Because the sandwich beam becomes at micro scale, it is very important to use material length scale parameter that 

can correctly increase the stiffness of a sandwich beam in vibration control. One of the theories becomes modified couple 

stress theory (MCST) that considers the effect of material length scale parameter and can correctly enhance the stiffness 

of the structure. Figs. 9a and b show the first natural frequency and deflection response of Timoshenko’s micro sandwich 

beam with CNT reinforced nanocomposite integrated by piezoelectric for classical theory (CT) and MCST. It is shown 

that the stiffness structure in MCST is more than in CT, so the natural frequency is higher. But, the amplitude of center 

point deflection and settling time of structure in MCST is slightly changed compared to CT. 



36 Mohammadjavad Jafari and Mehdi Mohammadimehr 

 
(a) 

 
(b) 

Fig.9. a) The first natural frequency versus different L/h and b) deflection versus time of CT and MCST for Timoshenko’s micro sandwich 

beam reinforced CNT integrated by piezoelectric layers 

 

Fig. 10 shows the effect of two types of boundary conditions (simply supported (S-S) and clamped (C-C)) on the 

natural frequency of Timoshenko’s micro sandwich beam reinforced CNT integrated piezoelectric layers. It is shown that 

the natural frequency for C-C BC's is higher that of S-S BC's, because the stiffness of structure for C-C is more than the 

other BC's.  
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Fig.10. The effect of two types of boundary conditions (S-S and C-C) on the natural frequency of Timoshenko’s micro sandwich beam reinforced 

CNT integrated piezoelectric layers  

 

The beating phenomenon occurs when the excitation frequency of the applied harmonic force is very close to the 

natural frequency of the structure, but not exactly equal to it. Fig.11 shows forced vibration control of Timoshenko’s 

micro sandwich beam reinforced CNT integrated piezoelectric with excited frequency near the natural frequency. 

 

Fig.11. Forced vibration control of Timoshenko’s micro sandwich beam with CNT reinforced integrated piezoelectric and excited frequency 

equal 97% natural frequency 

7. Conclusion  

In this research, the active control of forced vibrations of Timoshenko’s micro sandwich beam with foam core. Three 

types of CNT, CNR and GPL nanocomposite reinforcements integrated by piezoelectric are assumed for face sheets. Top 

and bottom face sheet was considered as actuator and sensor, respectively, and the micro sandwich structure was rested 

on Kerr’s foundation. Timoshenko beam theory based on MCST was used to derive the governing equations. The active 

control of vibrations was achieved using state space form and LQR approach. After validation of motion equations, effects 

of various volume fraction of CNTs/GPLs/CNRs on forced vibration response and amplitude of deflection center point 

and settling time were analyzed and also, difference between CNT, GPL and CNR and also various modes of natural 

frequency in reducing vibrations was investigated. The effect of spring coefficients and shear layer constant of Kerr 

foundation on vibration attenuation and natural frequency was analyzed. The results following can be obtained from this 

research: 
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• The beating phenomenon have considered in the present work that these phenomenon occurs when the excitation 

frequency of the applied harmonic force is very close to the natural frequency of the structure, but not exactly equal 

to it. 

• Increasing volume fraction of nanocomposite reinforcements increases natural frequency and decreases settling time 

and amplitude of deflection. 

• By comparing the natural frequency and settling time of similar volume fraction of CNT, GPL and CNR reinforced 

composite, GPLs had highest natural frequency and lowest settling time and amplitude of center point deflection. 

• Among the two elastic foundation of Kerr and Pasternak, the natural frequency and settling time of Kerr foundation 

are less than Pasternak foundation. 

• By increasing the stiffness of the structure, natural frequency was increased and settling time was decreased and 

vibrations attenuation was occurred sooner.   

• Increasing the natural frequency mode increases force vibration response and amplitude of deflection and settling 

time.  

• The second mode of natural frequency was increased by about 3.6 times compared to the first mode of natural 

frequency for various volume fractions of CNT, GPL and CNR. 

• The third mode of natural frequency was increased by about 7 times compared to the first mode of natural frequency 

for various volume fractions of CNT, GPL and CNR. 

• The Kerr foundation was increased the natural frequency more than Winkler foundation and less than Pasternak 

foundation. 

• For constant spring coefficient, the amplitude of center point deflection of Kerr foundation was less than Pasternak 

foundation and more than Winkler foundation. Also the settling time of Kerr foundation was faster than Pasternak 

foundation and slower than Winkler foundation. 

• It is shown that with adding 1% reinforcements (CNT,GPL, and CNR), the first natural frequency enhances 27.61%, 

82.41%, and 67.04%, respectively. 

• It is shown that the natural frequency for C-C BC's is higher that of S-S BC's, because the stiffness of structure for C-

C is more than the S-S BC's. 

• Because the sandwich beam becomes at micro scale, it is very important to use material length scale parameter that 

can correctly increase the stiffness of a sandwich beam in vibration control. The first natural frequency and 

deflection response of Timoshenko’s micro sandwich beam with CNT reinforced nanocomposite integrated by 

piezoelectric for classical theory (CT) and MCST are considered. It is shown that the stiffness structure in MCST is 

more than in CT, so the natural frequency increases more. But, the amplitude of center point deflection and settling 

time of structure in MCST is slightly changed compared to CT. 
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Appendix A 

 To explain in more details how the interaction between the foundation parameters and the beam's material properties 

occur, and for obtaining 𝐹𝑒𝑙𝑎𝑠𝑡𝑖𝑐  in Eq. (39), it is assumed that the transverse displacement of the entire structure consists 

of two parts: 

𝑤(𝑥, 𝑡) = 𝑤1(𝑥, 𝑡) + 𝑤2(𝑥, 𝑡) (A-1) 

where 𝑤1 is transverse displacement of upper spring and 𝑤2 is transverse deflection of lower elastic medium. The force 

generated between beam and upper spring is obtained as follows: 

𝐹𝑒𝑙𝑎𝑠𝑡𝑖𝑐 = 𝑘𝑡𝑤1 (A-2) 

also, the government equation shear layer is written as follows: 

𝐹𝑒𝑙𝑎𝑠𝑡𝑖𝑐 = 𝑘𝑏𝑤2 − 𝑘𝐺
𝜕2𝑤2
𝜕𝑥2

 (A-3) 

in which 𝑘𝑡 , 𝑘𝑏 and 𝑘𝐺 are top spring, bottom spring and shear layer constants, respectively. Substituting 𝑤1 from 

Eq.(A-1) into Eq.(A-2) yields: 

𝐹𝑒𝑙𝑎𝑠𝑡𝑖𝑐 = 𝑘𝑡(𝑤 − 𝑤2) (A-4) 

then, Substituting 𝑤2 from  Eq.(A-4) into Eq.(A-3) yields the following equation: 

𝐹𝑒𝑙𝑎𝑠𝑡𝑖𝑐 = 𝑘𝑏 (𝑤 −
𝐹𝑒𝑙𝑎𝑠𝑡𝑖𝑐
𝑘𝑡

) − 𝑘𝐺
𝜕2

𝜕𝑥2
(𝑤 −

𝐹𝑒𝑙𝑎𝑠𝑡𝑖𝑐
𝑘𝑡

)  (A-5) 

 

After simplifying, one can obtain Eq. (39). 


