Investigating Heat-Induced Phase Transitions in POPC Lipid Bilayers Using Molecular Dynamics Simulations

Document Type : Research Paper

Authors

1 Chemical and Petroleum Engineering Department, Sharif University of Technology, Tehran, Iran

2 Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran

3 Key Laboratory of Materials Physics, and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, China

4 University of Science and Technology of China, Hefei, Anhui 230026, China

Abstract

In this study, the effect of heat shock on the cell membrane was investigated using molecular dynamics (MD) simulations. Specifically, we examined the structural and dynamic behavior of a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid bilayer as it was exposed to increasing temperatures ranging from 310K to 340K. The results revealed a significant transition in membrane behavior as temperature increased, particularly at 330K and 340K, where the bilayer exhibited characteristics of a fluid disordered phase. This transition was marked by an increase in the area per lipid, a decrease in bilayer thickness, and a reduction in the deuterium order parameter (Scd), indicating increased molecular disorder and membrane fluidity. Additionally, the number of hydrogen bonds between lipid head groups and surrounding water molecules declined, weakening electrostatic interactions and promoting bilayer permeability. At 330K and 340K, these changes contributed to the formation of transient pores, which could facilitate molecular transport across the bilayer. The optimal temperature for maintaining membrane stability while enhancing molecular diffusion was found to be 320K, where the bilayer retained an ordered structure and displayed increased lipid mobility without significant disruption. These findings provide valuable insights into the thermal regulation of membrane behavior, which has critical implications for processes such as drug delivery, gene transfection, and thermal therapy. Molecular dynamics simulations at the atomistic level allow us to uncover intricate details of membrane phase transitions that are challenging to observe experimentally.

Keywords

Main Subjects

[1]          L. Salimzadeh, M. Jaberipour, A. Hosseini, A. Ghaderi, Non-viral transfection methods optimized for gene delivery to a lung cancer cell line, Avicenna journal of medical biotechnology, Vol. 5, No. 2, pp. 68, 2013.
[2]          F. S. Barnes, B. Greenebaum, 2018, Biological and medical aspects of electromagnetic fields, CRC press,
[3]          T. Kotnik, L. Rems, M. Tarek, D. Miklavčič, Membrane electroporation and electropermeabilization: mechanisms and models, Annual review of biophysics, Vol. 48, No. 1, pp. 63-91, 2019.
[4]          A. Bouakaz, A. Zeghimi, A. A. Doinikov, Sonoporation: concept and mechanisms, Therapeutic Ultrasound, pp. 175-189, 2016.
[5]          B. Helfield, X. Chen, S. C. Watkins, F. S. Villanueva, Biophysical insight into mechanisms of sonoporation, Proceedings of the National Academy of Sciences, Vol. 113, No. 36, pp. 9983-9988, 2016.
[6]          N. Mignet, C. Marie, A. Delalande, S. Manta, M.-F. Bureau, G. Renault, D. Scherman, C. Pichon, Microbubbles for nucleic acid delivery in liver using mild sonoporation, Nanotechnology for Nucleic Acid Delivery: Methods and Protocols, pp. 377-387, 2019.
[7]          M. P. Stewart, A. Sharei, X. Ding, G. Sahay, R. Langer, K. F. Jensen, In vitro and ex vivo strategies for intracellular delivery, Nature, Vol. 538, No. 7624, pp. 183-192, 2016.
[8]          K. A. Hlavaty, M. G. Booty, S. Loughhead, K. Blagovic, A. Vicente-Suarez, D. Yarar, H. Bernstein, A. Sharei, Engineering a new generation of cell therapies for solid tumor oncology using the SQZ platform, Cancer Research, Vol. 79, No. 13_Supplement, pp. 3187-3187, 2019.
[9]          T. Takai, H. Ohmori, Enhancement of DNA transfection efficiency by heat treatment of cultured mammalian cells, Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression, Vol. 1129, No. 2, pp. 161-165, 1992.
[10]        H. J. Kim, J. F. Greenleaf, R. R. Kinnick, J. T. Bronk, M. E. Bolander, Ultrasound-mediated transfection of mammalian cells, Human gene therapy, Vol. 7, No. 11, pp. 1339-1346, 1996.
[11]        V. G. Zarnitsyn, M. R. Prausnitz, Physical parameters influencing optimization of ultrasound-mediated DNA transfection, Ultrasound in medicine & biology, Vol. 30, No. 4, pp. 527-538, 2004.
[12]        M.-P. Rols, C. Delteil, G. Serin, J. Teissié, Temperature effects on electrotransfection of mammalian cells, Nucleic acids research, Vol. 22, No. 3, pp. 540, 1994.
[13]        C. J. Frégeau, R. C. Bleackley, Factors influencing transient expression in cytotoxic T cells following DEAE dextran-mediated gene transfer, Somatic cell and molecular genetics, Vol. 17, No. 3, pp. 239-257, 1991.
[14]        J. P. N. Silva, A. C. Oliveira, M. Lúcio, A. C. Gomes, P. J. Coutinho, M. E. C. R. Oliveira, Tunable pDNA/DODAB: MO lipoplexes: the effect of incubation temperature on pDNA/DODAB: MO lipoplexes structure and transfection efficiency, Colloids and Surfaces B: Biointerfaces, Vol. 121, pp. 371-379, 2014.
[15]        A. Khajeh, H. Modarress, The influence of cholesterol on interactions and dynamics of ibuprofen in a lipid bilayer, Biochimica et Biophysica Acta (BBA)-Biomembranes, Vol. 1838, No. 10, pp. 2431-2438, 2014.
[16]        A. Khajeh, H. Modarress, Effect of cholesterol on behavior of 5-fluorouracil (5-FU) in a DMPC lipid bilayer, a molecular dynamics study, Biophysical chemistry, Vol. 187, pp. 43-50, 2014.
[17]        P. Mukhopadhyay, L. Monticelli, D. P. Tieleman, Molecular dynamics simulation of a palmitoyl-oleoyl phosphatidylserine bilayer with Na+ counterions and NaCl, Biophysical journal, Vol. 86, No. 3, pp. 1601-1609, 2004.
[18]        J. F. Nagle, S. Tristram-Nagle, Structure of lipid bilayers, Biochimica et Biophysica Acta (BBA)-Reviews on Biomembranes, Vol. 1469, No. 3, pp. 159-195, 2000.
[19]        J. F. Nagle, H. I. Petrache, N. Gouliaev, S. Tristram-Nagle, Y. Liu, R. M. Suter, K. Gawrisch, Multiple mechanisms for critical behavior in the biologically relevant phase of lecithin bilayers, Physical Review E, Vol. 58, No. 6, pp. 7769, 1998.
[20]        S. Garcia-Manyes, G. Oncins, F. Sanz, Effect of temperature on the nanomechanics of lipid bilayers studied by force spectroscopy, Biophysical journal, Vol. 89, No. 6, pp. 4261-4274, 2005.
[21]        A. Kordzadeh, S. Amjad-Iranagh, M. Zarif, H. Modarress, Adsorption and encapsulation of the drug doxorubicin on covalent functionalized carbon nanotubes: A scrutinized study by using molecular dynamics simulation and quantum mechanics calculation, Journal of Molecular Graphics and Modelling, Vol. 88, pp. 11-22, 2019.
[22]        D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, H. J. Berendsen, GROMACS: fast, flexible, and free, Journal of computational chemistry, Vol. 26, No. 16, pp. 1701-1718, 2005.
[23]        W. F. van Gunsteren, S. Billeter, A. Eising, P. Hünenberger, P. Krüger, A. Mark, W. Scott, I. Tironi, Biomolecular simulation: the GROMOS96 manual and user guide, Vdf Hochschulverlag AG an der ETH Zürich, Zürich, Vol. 86, pp. 1-1044, 1996.
[24]        H. J. Berendsen, J. P. Postma, W. F. van Gunsteren, J. Hermans, Interaction models for water in relation to protein hydration, in Proceeding of, Springer, pp. 331-342.
[25]        S. Amjad-Iranagh, A. Yousefpour, P. Haghighi, H. Modarress, Effects of protein binding on a lipid bilayer containing local anesthetic articaine, and the potential of mean force calculation: a molecular dynamics simulation approach, Journal of molecular modeling, Vol. 19, pp. 3831-3842, 2013.
[26]        A. Yousefpour, H. Modarress, F. Goharpey, S. Amjad-Iranagh, Combination of anti-hypertensive drugs: a molecular dynamics simulation study, Journal of Molecular Modeling, Vol. 23, pp. 1-18, 2017.
[27]        A. Yousefpour, H. Modarress, F. Goharpey, S. Amjad-Iranagh, Interaction of drugs amlodipine and paroxetine with the metabolizing enzyme CYP2B4: a molecular dynamics simulation study, Journal of Molecular Modeling, Vol. 24, pp. 1-11, 2018.
[28]        O. Berger, O. Edholm, F. Jähnig, Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature, Biophysical journal, Vol. 72, No. 5, pp. 2002-2013, 1997.
[29]        G. Bussi, D. Donadio, M. Parrinello, Canonical sampling through velocity rescaling, The Journal of chemical physics, Vol. 126, No. 1, 2007.
[30]        H. J. Berendsen, J. v. Postma, W. F. Van Gunsteren, A. DiNola, J. R. Haak, Molecular dynamics with coupling to an external bath, The Journal of chemical physics, Vol. 81, No. 8, pp. 3684-3690, 1984.
[31]        H.-d. Zheng, B.-y. Wang, Y.-x. Wu, Molecular dynamics simulation on the interfacial features of phenol extraction by TBP/dodecane in water, Computational and Theoretical Chemistry, Vol. 970, No. 1-3, pp. 66-72, 2011.
[32]        T. Darden, D. York, L. Pedersen, Particle mesh Ewald: An N⋅ log (N) method for Ewald sums in large systems, The Journal of chemical physics, Vol. 98, No. 12, pp. 10089-10092, 1993.
[33]        B. Jójárt, T. A. Martinek, Performance of the general amber force field in modeling aqueous POPC membrane bilayers, Journal of computational chemistry, Vol. 28, No. 12, pp. 2051-2058, 2007.
[34]        K. L. Koster, M. S. Webb, G. Bryant, D. V. Lynch, Interactions between soluble sugars and POPC (1-palmitoyl-2-oleoylphosphatidylcholine) during dehydration: vitrification of sugars alters the phase behavior of the phospholipid, Biochimica et Biophysica Acta (BBA)-Biomembranes, Vol. 1193, No. 1, pp. 143-150, 1994.
[35]        M. Fidorra, L. Duelund, C. Leidy, A. C. Simonsen, L. Bagatolli, Absence of fluid-ordered/fluid-disordered phase coexistence in ceramide/POPC mixtures containing cholesterol, Biophysical journal, Vol. 90, No. 12, pp. 4437-4451, 2006.
[36]        M. L. Frazier, J. R. Wright, A. Pokorny, P. F. Almeida, Investigation of domain formation in sphingomyelin/cholesterol/POPC mixtures by fluorescence resonance energy transfer and Monte Carlo simulations, Biophysical journal, Vol. 92, No. 7, pp. 2422-2433, 2007.
[37]        D. P. Tieleman, L. R. Forrest, M. S. Sansom, H. J. Berendsen, Lipid properties and the orientation of aromatic residues in OmpF, influenza M2, and alamethicin systems: molecular dynamics simulations, Biochemistry, Vol. 37, No. 50, pp. 17554-17561, 1998.
[38]        !!! INVALID CITATION !!! [42-44].
[39]        A. Yousefpour, S. Amjad Iranagh, Y. Nademi, H. Modarress, Molecular dynamics simulation of nonsteroidal antiinflammatory drugs, naproxen and relafen, in a lipid bilayer membrane, International Journal of Quantum Chemistry, Vol. 113, No. 15, pp. 1919-1930, 2013.
[40]        A. Yousefpour, S. Amjad-Iranagh, F. Goharpey, H. Modarress, Effect of drug amlodipine on the charged lipid bilayer cell membranes DMPS and DMPS+ DMPC: A molecular dynamics simulation study, European Biophysics Journal, Vol. 47, pp. 939-950, 2018.
[41]        Y. Nademi, S. AMJAD IRANAGH, A. Yousefpour, S. Z. Mousavi, H. Modarress, Molecular dynamics simulations and free energy profile of Paracetamol in DPPC and DMPC lipid bilayers, Journal of Chemical Sciences, Vol. 126, pp. 637-647, 2014.
[42]        W. Humphrey, A. Dalke, K. Schulten, VMD: visual molecular dynamics, Journal of molecular graphics, Vol. 14, No. 1, pp. 33-38, 1996.
[43]        W. J. Allen, J. A. Lemkul, D. R. Bevan, GridMAT‐MD: a grid‐based membrane analysis tool for use with molecular dynamics, Journal of computational chemistry, Vol. 30, No. 12, pp. 1952-1958, 2009.
[44]        X. Zhuang, J. R. Makover, W. Im, J. B. Klauda, A systematic molecular dynamics simulation study of temperature dependent bilayer structural properties, Biochimica et Biophysica Acta (BBA)-Biomembranes, Vol. 1838, No. 10, pp. 2520-2529, 2014.
[45]        A. Yousefpour, H. Modarress, F. Goharpey, S. Amjad-Iranagh, Interaction of PEGylated anti-hypertensive drugs, amlodipine, atenolol and lisinopril with lipid bilayer membrane: A molecular dynamics simulation study, Biochimica et Biophysica Acta (BBA)-Biomembranes, Vol. 1848, No. 8, pp. 1687-1698, 2015.
[46]        S. Singh, Dynamics of heroin molecule inside the lipid membrane: A molecular dynamics study, Journal of Molecular Modeling, Vol. 25, No. 5, pp. 121, 2019.
[47]        J. Seelig, A. Seelig, Lipid conformation in model membranes and biological membranes, Quarterly reviews of Biophysics, Vol. 13, No. 1, pp. 19-61, 1980.
[48]        A. Seelig, J. Seelig, Dynamic structure of fatty acyl chains in a phospholipid bilayer measured by deuterium magnetic resonance, Biochemistry, Vol. 13, No. 23, pp. 4839-4845, 1974.
[49]        D. Bassolino-Klimas, H. E. Alper, T. R. Stouch, Mechanism of solute diffusion through lipid bilayer membranes by molecular dynamics simulation, Journal of the American Chemical Society, Vol. 117, No. 14, pp. 4118-4129, 1995.
[50]        W. Lieb, W. Stein, The molecular basis of simple diffusion within biological membranes,  in: Current topics in membranes and transport, Eds., pp. 1-39: Elsevier, 1972.
[51]        W. Lieb, W. Stein, Biological membranes behave as non-porous polymeric sheets with respect to the diffusion of non-electrolytes, Nature, Vol. 224, No. 5216, 1969.
[52]        S. Palmer, The effect of temperature on surface tension, Physics Education, Vol. 11, No. 2, pp. 119, 1976.
[53]        H. Leontiadou, A. E. Mark, S. J. Marrink, Molecular dynamics simulations of hydrophilic pores in lipid bilayers, Biophysical journal, Vol. 86, No. 4, pp. 2156-2164, 2004.
Volume 55, Issue 4
October 2024
Pages 771-782
  • Receive Date: 09 September 2024
  • Revise Date: 07 October 2024
  • Accept Date: 07 October 2024