Geometrical Assessment of Rectangular Fins at Different Surfaces and Positions on Nusselt Number of Lid-Driven Cavities under Laminar Forced Convection

Document Type : Research Paper

Authors

1 Graduate Program in Computational Modeling, Universidade Federal do Rio Grande, Itália Avenue, km 8, 96201-900, Rio Grande, Brazil

2 Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze, 181/A, 43124, Parma, Italy

3 Área do Conhecimento de Ciências Exatas e Engenharias, Universidade de Caxias do Sul, Rua Francisco Getúlio Vargas 1130, 95070-560, Caxias do Sul, Brazil

4 Institute of Hydraulic Research, Universidade Federal do Rio Grande do Sul (IPH-UFRGS), Av. Bento Gonçalves 9500, 91501-970, Porto Alegre, Brazil

5 Institute of Earth Sciences, Complex Fluid Systems Lab, Rua Romao Ramalho 59, 7000-671 Evora, Portugal

6 Mechanical Engineering Graduate Program, Universidade Federal do Rio Grande do Sul – UFRGS, Rua Sarmento Leite 425, 90040-001 Porto Alegre, Brazil

Abstract

This work focused on the geometric assessment by the lens of the Constructal Design of a rectangular fin placed at different surfaces and positions of lid-driven cavities under laminar forced convection. This study aims to maximize the Nusselt number (NuH) from the isothermal fin for Reynolds numbers (ReH) ranging from 10 to 1000 and a fixed Prandtl equal to 0.71. The fin was placed at the lower, upstream, and downstream cavity surfaces in five positions (S* = 0.1; 0.3; 0.5; 0.7; 0.9). The domain presents two constraints: the cavity area and the ratio fin area to cavity area kept constant for all cases (φ = 0.05). The degrees of freedom explored to maximize the Nusselt number were the ratio between the height and length of the fin (H1/L1) and the fin position along each cavity surface. The results indicated that the fin geometry and positions significantly affected the Nusselt number. The highest Nusselt number was achieved for the fin positioned on the downstream cavity surface with H1/L1 = 2.0 and S* = 0.9, improving the Nusselt number by 63.1% and 5.8% compared to the optimal shapes in the lower and upstream cavity surfaces.

Keywords

Main Subjects

[1]          A. H. Jabado, M. El Hassan, H. H. Assoum, A. Hammoud, K. A. Meraim, A. Sakout, A review of cavity heat transfer under separated/reattached flow conditions, Energy Reports, Vol. 8, pp. 949-956, 2022.
[2]          S. Gupta, A. Chauhan, C. Sasmal, Influence of elastic instability and elastic turbulence on mixed convection of viscoelastic fluids in a lid-driven cavity, International Journal of Heat and Mass Transfer, Vol. 186, pp. 122469-122469, 2022.
[3]          E. D. Dos Santos, G. L. Piccoli, F. H. R. França, A. P. Petry, Analysis of mixed convection in transient laminar and turbulent flows in driven cavities, International Journal of Heat and Mass Transfer, Vol. 54, No. 21-22, pp. 4585-4595, 2011.
[4]          M. A. Ismael, I. Pop, A. J. Chamkha, Mixed convection in a lid-driven square cavity with partial slip, International Journal of Thermal Sciences, Vol. 82, No. 1, pp. 47-61, 2014.
[5]          P. M. Rodrigues, C. Biserni, C. C. de Escobar, L. A. O. Rocha, L. A. Isoldi, E. D. dos Santos, Geometric optimization of a lid-driven cavity with two rectangular intrusions under mixed convection heat transfer: A numerical investigation motivated by constructal design, International Communications in Heat and Mass Transfer, Vol. 117, No. July, pp. 104759-104759, 2020.
[6]          R. Iwatsu, J. M. Hyun, K. Kuwahara, Mixed convection in a driven cavity with a stable vertical temperature gradient, International Journal of Heat and Mass Transfer, Vol. 36, No. 6, pp. 1601-1608, 1993.
[7]          M. Sheikholeslami, S. A. Shehzad, F. M. Abbasi, Z. Li, Nanofluid flow and forced convection heat transfer due to Lorentz forces in a porous lid driven cubic enclosure with hot obstacle, Computer Methods in Applied Mechanics and Engineering, Vol. 338, pp. 491-505, 2018.
[8]          M. F. Karim, S. Islam, M. M. Rahman, A. Paul, G. Mandal, A numerical investigation on forced convection heat and mass transfer performance in a right triangular cavity, International Journal of Thermofluids, Vol. 21, No. January, pp. 100578-100578, 2024.
[9]          T. S. Cheng, W. H. Liu, Effect of temperature gradient orientation on the characteristics of mixed convection flow in a lid-driven square cavity, Computers & Fluids, Vol. 39, No. 6, pp. 965-978, 2010.
[10]        K. M. Gangawane, H. F. Oztop, M. E. Ali, Mixed convection in a lid-driven cavity containing triangular block with constant heat flux: Effect of location of block, International Journal of Mechanical Sciences, Vol. 152, No. August 2018, pp. 492-511, 2019.
[11]        M. A. Alomari, K. Al-Farhany, Q. H. Al-Salami, I. R. Ali, N. Biswas, M. H. Mohamed, F. Alqurashi, Numerical analysis to investigate the effect of a porous block on MHD mixed convection in a split lid-driven cavity with nanofluid, International Journal of Thermofluids, Vol. 22, pp. 100621-100621, 2024.
[12]        M. K. Moallemi, K. S. Jang, Prandtl number effects on laminar mixed convection heat transfer in a lid-driven cavity, International Journal of Heat and Mass Transfer, Vol. 35, No. 8, pp. 1881-1892, 1992.
[13]        A. K. Prasad, J. R. Koseff, Combined forced and natural convection heat transfer in a deep lid-driven cavity flow, International Journal of Heat and Fluid Flow, Vol. 17, No. 5, pp. 460-467, 1996.
[14]        S. Sivasankaran, V. Sivakumar, A. K. Hussein, Numerical study on mixed convection in an inclined lid-driven cavity with discrete heating, International Communications in Heat and Mass Transfer, Vol. 46, pp. 112-125, 2013.
[15]        T. P. Chiang, W. H. Sheu, R. R. Hwang, Effect of Reynolds number on the eddy structure in a lid-driven cavity, International Journal for Numerical Methods in Fluids, Vol. 26, No. 5, pp. 557-579, 1998.
[16]        S. E. Ahmed, Z. Raizah, A. A. M. Arafa, S. A. Hussein, FEM treatments for MHD highly mixed convection flow within partially heated double-lid driven odd-shaped enclosures using ternary composition nanofluids, International Communications in Heat and Mass Transfer, Vol. 145, pp. 106854-106854, 2023.
[17]        A. J. Chamkha, S. H. Hussain, Q. R. Abd-Amer, Mixed convection heat transfer of air inside a square vented cavity with a heated horizontal square cylinder, Numerical Heat Transfer; Part A: Applications, Vol. 59, No. 1, pp. 58-79, 2011.
[18]        H. F. Oztop, Z. Zhao, B. Yu, Fluid flow due to combined convection in lid-driven enclosure having a circular body, International Journal of Heat and Fluid Flow, Vol. 30, No. 5, pp. 886-901, 2009.
[19]        N. S. Gibanov, M. A. Sheremet, H. F. Oztop, K. Al-Salem, Convective heat transfer in a lid-driven cavity with a heat-conducting solid backward step under the effect of buoyancy force, International Journal of Heat and Mass Transfer, Vol. 112, pp. 158-168, 2017.
[20]        K. Khanafer, S. M. Aithal, Mixed convection heat transfer in a lid-driven cavity with a rotating circular cylinder, International Communications in Heat and Mass Transfer, Vol. 86, pp. 131-142, 2017.
[21]        S. E. Ahmed, M. Alhazmi, Impacts of the rotation and various thermal conditions of cylinders within lid-driven enclosures filled with glass balls in the presence of radiation: FEM simulation, International Communications in Heat and Mass Transfer, Vol. 128, pp. 105603-105603, 2021.
[22]        A. K. Kareem, S. Gao, A comparison study of mixed convection heat transfer of turbulent nanofluid flow in a three-dimensional lid-driven enclosure with a clockwise versus an anticlockwise rotating cylinder, International Communications in Heat and Mass Transfer, Vol. 90, pp. 44-55, 2018.
[23]        H. Moayedi, N. Amanifard, H. M. Deylami, A comparative study of the effect of fin shape on mixed convection heat transfer in a lid-driven square cavity, Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol. 44, No. 8, pp. 1-19, 2022.
[24]        A. Bejan, Constructal-theory network of conducting paths for cooling a heat generating volume, International Journal of Heat and Mass Transfer, Vol. 40, No. 4, pp. 799-811, 1997.
[25]        A. Bejan, 2000, Shape and structure, from engineering to nature, Cambridge university press,
[26]        A. Bejan, J. P. Zane, 2013, Design in Nature: How the Constructal Law governs evolution in biology, physics, technology, and social organizations, Anchor,
[27]        A. Bejan, S. Lorente, 2008, Design with Constructal Theory, John Wiley & Sons, Inc., Hoboken, NJ, USA
[28]        A. Bejan, S. Lorente, The constructal law and the evolution of design in nature, Physics of Life Reviews, Vol. 8, No. 3, pp. 209-240, 2011.
[29]        S. Lorente, A. Bejan, Current trends in constructal law and evolutionary design, Heat Transfer-Asian Research, Vol. 48, No. 8, pp. 3574-3589, 2019.
[30]        A. Bejan, S. Lorente, Constructal law of design and evolution: Physics, biology, technology, and society, Journal of Applied Physics, Vol. 113, No. 15, pp. 151301-151301, 2013.
[31]        S. Lorente, M. Hautefeuille, A. Sanchez-Cedillo, The liver, a functionalized vascular structure, Scientific Reports, Vol. 10, No. 1, pp. 16194-16194, 2020.
[32]        X. Zhang, S. Lorente, The growth of capillary networks by branching for maximum fluid access, Scientific Reports, Vol. 13, No. 1, pp. 1-10, 2023.
[33]        S. Lorente, A. Bejan, J. L. Niu, Phase change heat storage in an enclosure with vertical pipe in the center, International Journal of Heat and Mass Transfer, Vol. 72, pp. 329-335, 2014.
[34]        S. Lorente, A. Bejan, J. L. Niu, Constructal design of latent thermal energy storage with vertical spiral heaters, International Journal of Heat and Mass Transfer, Vol. 81, pp. 283-288, 2015.
[35]        S. Gungor, E. Cetkin, S. Lorente, Canopy-to-canopy liquid cooling for the thermal management of lithium-ion batteries, a constructal approach, International Journal of Heat and Mass Transfer, Vol. 182, pp. 121918-121918, 2022.
[36]        G. D. Telli, S. Gungor, S. Lorente, Counterflow canopy-to-canopy and U-turn liquid cooling solutions for battery modules in stationary Battery Energy Storage Systems, Applied Thermal Engineering, Vol. 238, No. July 2023, pp. 121997-121997, 2024.
[37]        L. Chen, H. Feng, F. Zhang, Y. Ge, Constructal design for composite heat dissipating structure composed of an “arrow”-shaped high conductivity channel and an externally connected “T”-shaped fin, International Communications in Heat and Mass Transfer, Vol. 153, No. March, pp. 107341-107341, 2024.
[38]        C. L. Zhu H, Feng H, Ge Y, Constructal design of comb-shaped high thermal conductivity channel in a stacked chip, International Communications in Heat and Mass Transfer, Vol. 155, No. 107557, 2024.
[39]        X. Z. Lu Z, Xi K, Lin D, Liu H, Ge Y, Wu F, Constructal evolutionary design of liquid cooling heat sink embedded in 3D-IC based on deep neural network prediction, International Communications in Heat and Mass Transfer, Vol. 152, No. 107273, 2024, 2024.
[40]        G. Lorenzini, B. S. Machado, L. A. Isoldi, E. D. dos Santos, L. A. O. Rocha, Constructal Design of Rectangular Fin Intruded Into Mixed Convective Lid-Driven Cavity Flows, Journal of Heat Transfer, Vol. 138, No. 10, pp. 1-12, 2016.
[41]        E. S. Aldrighi, P. M. Rodrigues, B. D. D. A. Rodriguez, L. A. Isoldi, L. A. O. Rocha, E. D. Dos Santos, Constructal design of rectangular fin intruded into different surfaces of forced convective lid-driven cavity flow, International Journal of Fluid Mechanics Research, Vol. 43, No. 5-6, pp. 418-440, 2016.
[42]        A. L. Razera, R. J. C. da Fonseca, L. A. Isoldi, E. D. dos Santos, L. A. O. Rocha, C. Biserni, Constructal design of a semi-elliptical fin inserted in a lid-driven square cavity with mixed convection, International Journal of Heat and Mass Transfer, Vol. 126, pp. 81-94, 2018.
[43]        R. da Silveira Borahel, F. S. F. Zinani, L. A. O. Rocha, E. D. dos Santos, L. A. Isoldi, C. Biserni, Geometric optimization of a rectangular isothermal block inside a lid-driven cavity by means of constructal design, International Communications in Heat and Mass Transfer, Vol. 139, pp. 106499-106499, 2022.
[44]        A. Bejan, 2013, Convection heat transfer, John Wiley & Sons, Inc, New Jersey, 4thed.
[45]        W. M. H.K. Versteeg, 2007, An Introduction to Computational Fluid Dynamics: The Finite Volume Method, Pearson Education,
[46]        S. V. Patankar, 2018, Numerical Heat Transfer and Fluid Flow, CRC Press, Boca Raton
[47]        R. P. Maciel, P. H. Oleinik, E. D. Dos Santos, L. A. O. Rocha, B. N. Machado, M. d. N. Gomes, L. A. Isoldi, Constructal Design Applied to an Oscillating Water Column Wave Energy Converter Device under Realistic Sea State Conditions, Journal of Marine Science and Engineering, Vol. 11, No. 11, pp. 1-31, 2023.
[48]        M. Nallasamy, K. K. Prasad, On cavity flow at high Reynolds numbers, Journal of Fluid Mechanics, Vol. 79, No. 2, pp. 391-414, 1977.
Volume 55, Issue 4
October 2024
Pages 744-770
  • Receive Date: 05 August 2024
  • Revise Date: 20 August 2024
  • Accept Date: 09 September 2024