[1] G. Iddan, G. Meron, A. Glukhovsky, P. Swain, Wireless capsule endoscopy, Nature, Vol. 405, No. 6785, pp. 417-417, 2000.
[2] S. Y. Lee, J. Y. Lee, Y. J. Lee, K. S. Park, Natural elimination of a video capsule after retention for 1 year in a patient with small bowel crohn disease: A case report, Medicine, Vol. 98, No. 43, 2019.
[3] A. Slesser, R. Wharton, G. Smith, G. Buchanan, Systematic review of small bowel diaphragm disease requiring surgery, Colorectal Disease, Vol. 14, No. 7, pp. 804-813, 2012.
[4] Z. Han, W. Qiao, X. Ai, A. Li, Z. Chen, J. Zhang, T. Wan, X. Feng, S. Liu, F. Zhi, Risk factors for surgery in patients with retention of endoscopic capsule, Scandinavian Journal of Gastroenterology, Vol. 53, No. 1, pp. 107-113, 2018.
[5] E. Rondonotti, J. M. Herrerias, M. Pennazio, A. Caunedo, M. Mascarenhas-Saraiva, R. de Franchis, Complications, limitations, and failures of capsule endoscopy: a review of 733 cases, Gastrointestinal endoscopy, Vol. 62, No. 5, pp. 712-716, 2005.
[6] P. Valdastri, M. Simi, R. J. Webster III, Advanced technologies for gastrointestinal endoscopy, Annual review of biomedical engineering, Vol. 14, pp. 397-429, 2012.
[7] D. Ye, J. Xue, S. Yuan, F. Zhang, S. Song, J. Wang, M. Q.-H. Meng, Design and control of a magnetically-actuated capsule robot with biopsy function, IEEE Transactions on Biomedical Engineering, Vol. 69, No. 9, pp. 2905-2915, 2022.
[8] M. C. Hoang, V. H. Le, K. T. Nguyen, V. D. Nguyen, J. Kim, E. Choi, S. Bang, B. Kang, J.-O. Park, C.-S. Kim, A robotic biopsy endoscope with magnetic 5-DOF locomotion and a retractable biopsy punch, Micromachines, Vol. 11, No. 1, pp. 98, 2020.
[9] M. N. Huda, H. Yu, S. Cang, Robots for minimally invasive diagnosis and intervention, Robotics and Computer-Integrated Manufacturing, Vol. 41, pp. 127-144, 2016.
[10] S. Sarker, B. Wankum, J. Shimizu, R. Jones, B. Terry, A factorial approach for optimizing the design parameters of a tissue attachment mechanism for drug delivery, IEEE Transactions on Biomedical Engineering, Vol. 69, No. 1, pp. 32-41, 2021.
[11] L. Liu, S. Towfighian, A. Hila, A review of locomotion systems for capsule endoscopy, IEEE reviews in biomedical engineering, Vol. 8, pp. 138-151, 2015.
[12] F. Munoz, G. Alici, H. Zhou, W. Li, M. Sitti, Analysis of magnetic interaction in remotely controlled magnetic devices and its application to a capsule robot for drug delivery, IEEE/ASME Transactions on Mechatronics, Vol. 23, No. 1, pp. 298-310, 2017.
[13] N. Shamsudhin, V. I. Zverev, H. Keller, S. Pane, P. W. Egolf, B. J. Nelson, A. M. Tishin, Magnetically guided capsule endoscopy, Medical physics, Vol. 44, No. 8, pp. e91-e111, 2017.
[14] H. Li, G. Yan, G. Ma, An active endoscopic robot based on wireless power transmission and electromagnetic localization, The International Journal of Medical Robotics and Computer Assisted Surgery, Vol. 4, No. 4, pp. 355-367, 2008.
[15] P. S. Boroujeni, H. N. Pishkenari, H. Moradi, G. Vossoughi, Model-aided real-time localization and parameter identification of a magnetic endoscopic capsule using extended Kalman filter, IEEE Sensors Journal, Vol. 21, No. 12, pp. 13667-13675, 2021.
[16] H. Mateen, R. Basar, A. U. Ahmed, M. Y. Ahmad, Localization of wireless capsule endoscope: A systematic review, IEEE Sensors Journal, Vol. 17, No. 5, pp. 1197-1206, 2017.
[17] S. Zeising, A. S. Thalmayer, M. Lübke, G. Fischer, J. Kirchner, Localization of Passively Guided Capsule Endoscopes–A Review, IEEE Sensors Journal, 2022.
[18] S. Joe, D. Lee, H. Kang, B. Kang, J.-O. Park, B. Kim, A micro-tattooing device for capsule endoscope using a Wood's metal triggering mechanism, Mechatronics, Vol. 62, pp. 102259, 2019.
[19] G. Ciuti, N. Pateromichelakis, M. Sfakiotakis, P. Valdastri, A. Menciassi, D. Tsakiris, P. Dario, A wireless module for vibratory motor control and inertial sensing in capsule endoscopy, Sensors and Actuators A: Physical, Vol. 186, pp. 270-276, 2012.
[20] S. Yim, M. Sitti, Design and rolling locomotion of a magnetically actuated soft capsule endoscope, IEEE Transactions on Robotics, Vol. 28, No. 1, pp. 183-194, 2011.
[21] F. Carpi, S. Galbiati, A. Carpi, Controlled navigation of endoscopic capsules: Concept and preliminary experimental investigations, IEEE Transactions on Biomedical Engineering, Vol. 54, No. 11, pp. 2028-2036, 2007.
[22] J. Gao, G. Yan, Locomotion analysis of an inchworm-like capsule robot in the intestinal tract, IEEE Transactions on Biomedical Engineering, Vol. 63, No. 2, pp. 300-310, 2015.
[23] M. Rehan, I. Al‐Bahadly, D. G. Thomas, E. Avci, Capsule robot for gut microbiota sampling using shape memory alloy spring, The International Journal of Medical Robotics and Computer Assisted Surgery, Vol. 16, No. 5, pp. 1-14, 2020.
[24] M. Quirini, A. Menciassi, S. Scapellato, C. Stefanini, P. Dario, Design and fabrication of a motor legged capsule for the active exploration of the gastrointestinal tract, IEEE/ASME transactions on mechatronics, Vol. 13, No. 2, pp. 169-179, 2008.
[25] P. Valdastri, R. J. Webster, C. Quaglia, M. Quirini, A. Menciassi, P. Dario, A new mechanism for mesoscale legged locomotion in compliant tubular environments, IEEE Transactions on Robotics, Vol. 25, No. 5, pp. 1047-1057, 2009.
[26] H. M. Kim, S. Yang, J. Kim, S. Park, J. H. Cho, J. Y. Park, T. S. Kim, E.-S. Yoon, S. Y. Song, S. Bang, Active locomotion of a paddling-based capsule endoscope in an in vitro and in vivo experiment (with videos), Gastrointestinal endoscopy, Vol. 72, No. 2, pp. 381-387, 2010.
[27] L. J. Sliker, M. D. Kern, J. A. Schoen, M. E. Rentschler, Surgical evaluation of a novel tethered robotic capsule endoscope using micro-patterned treads, Surgical endoscopy, Vol. 26, pp. 2862-2869, 2012.
[28] I. De Falco, G. Tortora, P. Dario, A. Menciassi, An integrated system for wireless capsule endoscopy in a liquid-distended stomach, IEEE Transactions on Biomedical Engineering, Vol. 61, No. 3, pp. 794-804, 2013.
[29] G. Bingyong, Y. Liu, B. Rauf, P. Shyam, Self-propelled capsule endoscopy for small-bowel examination: proof-of-concept and model verification, 2020.
[30] Y. Liu, M. Wiercigroch, E. Pavlovskaia, H. Yu, Modelling of a vibro-impact capsule system, International Journal of Mechanical Sciences, Vol. 66, pp. 2-11, 2013.
[31] Y. Liu, E. Pavlovskaia, M. Wiercigroch, Z. Peng, Forward and backward motion control of a vibro-impact capsule system, International Journal of Non-Linear Mechanics, Vol. 70, pp. 30-46, 2015.
[32] C. Lee, H. Choi, G. Go, S. Jeong, S. Y. Ko, J.-O. Park, S. Park, Active locomotive intestinal capsule endoscope (ALICE) system: A prospective feasibility study, IEEE/ASME Transactions on Mechatronics, Vol. 20, No. 5, pp. 2067-2074, 2014.
[33] B. Kim, S. Park, C. Y. Jee, S.-J. Yoon, An earthworm-like locomotive mechanism for capsule endoscopes, in Proceeding of, IEEE, pp. 2997-3002.
[34] W. Chen, G. Yan, Z. Wang, P. Jiang, H. Liu, A wireless capsule robot with spiral legs for human intestine, The International Journal of Medical Robotics and Computer Assisted Surgery, Vol. 10, No. 2, pp. 147-161, 2014.
[35] L. Kim, S. C. Tang, S.-S. Yoo, Prototype modular capsule robots for capsule endoscopies, in Proceeding of, IEEE, pp. 350-354.
[36] I. Steinbrueck, F. Hagenmüller, Crohn's Stenosis in the Ileum with Video Capsule Retention and Removal by Peranal Single-Balloon Enteroscopy, Video Journal and Encyclopedia of GI Endoscopy, Vol. 1, No. 1, pp. 221-222, 2013.
[37] P. Glass, E. Cheung, M. Sitti, A legged anchoring mechanism for capsule endoscopes using micropatterned adhesives, IEEE Transactions on Biomedical Engineering, Vol. 55, No. 12, pp. 2759-2767, 2008.
[38] H. Zhou, G. Alici, F. Munoz, A magnetically actuated anchoring system for a wireless endoscopic capsule, Biomedical microdevices, Vol. 18, pp. 1-9, 2016.
[39] J. Ginsberg, 2008, Engineering dynamics, Cambridge University Press,
[40] M. Sendoh, K. Ishiyama, K.-I. Arai, Fabrication of magnetic actuator for use in a capsule endoscope, IEEE Transactions on Magnetics, Vol. 39, No. 5, pp. 3232-3234, 2003.
[41] Y. Zhang, S. Jiang, X. Zhang, X. Ruan, D. Guo, A variable-diameter capsule robot based on multiple wedge effects, IEEE/ASME Transactions on Mechatronics, Vol. 16, No. 2, pp. 241-254, 2010.
[42] H. Zhou, G. Alici, T. D. Than, W. Li, Modeling and experimental investigation of rotational resistance of a spiral-type robotic capsule inside a real intestine, IEEE/ASME Transactions On Mechatronics, Vol. 18, No. 5, pp. 1555-1562, 2012.
[43] J.-S. Kim, I.-H. Sung, Y.-T. Kim, E.-Y. Kwon, D.-E. Kim, Y. Jang, Experimental investigation of frictional and viscoelastic properties of intestine for microendoscope application, Tribology Letters, Vol. 22, pp. 143-149, 2006.
[44] S. H. Kim, H. J. Chun, Capsule endoscopy: Pitfalls and approaches to overcome, Diagnostics, Vol. 11, No. 10, pp. 1765, 2021.