Exploring the filtration mechanisms in spiral microchannels: A critical review in inertial microfluidics

Document Type : Review Paper

Authors

Department of Chemical Engineering, Isfahan University of Technology, Isfahan, 8415683111, Iran

Abstract

A crucial aspect in the design of spiral microchannels is understanding the equilibrium position of particles within them. With a wide array of applications in biomedicine and industry, numerous studies have been carried out to investigate the physical mechanisms influencing particle equilibrium, such as inertial lift and Dean drag forces. Past research, comprising various independent case studies, has highlighted that conventional spiral designs struggle to control lift forces, whereas enhancing the spiral microchannel design can regulate Dean flow intensity effectively. However, there remains a pressing need to delve deeper into and elucidate this phenomenon. This review article systematically concentrates on the factors that influence the shape and intensity of Dean vortices across the cross-section, ultimately determining the particles' equilibrium position within these systems. By synthesizing findings from both experimental and numerical approaches, the study investigates the key factors that govern particle equilibrium positions. Furthermore, the importance of shaping and positioning Dean vortices to effectively manipulate particle trajectories within spiral microchannels is emphasized. Additionally, the advantages and limitations of different cross-sectional shapes (rectangular, trapezoidal, complex) and loop patterns within spiral geometries are deliberated upon to enable more precise particle manipulation strategies.

Keywords

Main Subjects

[1]          D. R. Gossett, W. M. Weaver, A. J. Mach, S. C. Hur, H. T. K. Tse, W. Lee, H. Amini, D. Di Carlo, Label-free cell separation and sorting in microfluidic systems, Analytical and bioanalytical chemistry, Vol. 397, pp. 3249-3267, 2010.
[2]          J. Nilsson, M. Evander, B. Hammarström, T. Laurell, Review of cell and particle trapping in microfluidic systems, Analytica chimica acta, Vol. 649, No. 2, pp. 141-157, 2009.
[3]          P. S. Dittrich, A. Manz, Lab-on-a-chip: microfluidics in drug discovery, Nature reviews Drug discovery, Vol. 5, No. 3, pp. 210-218, 2006.
[4]          A. Shenoy, C. V. Rao, C. M. Schroeder, Stokes trap for multiplexed particle manipulation and assembly using fluidics, Proceedings of the National Academy of Sciences, Vol. 113, No. 15, pp. 3976-3981, 2016.
[5]          F. Guo, Z. Mao, Y. Chen, Z. Xie, J. P. Lata, P. Li, L. Ren, J. Liu, J. Yang, M. Dao, Three-dimensional manipulation of single cells using surface acoustic waves, Proceedings of the National Academy of Sciences, Vol. 113, No. 6, pp. 1522-1527, 2016.
[6]          M. Rafeie, J. Zhang, M. Asadnia, W. Li, M. E. Warkiani, Multiplexing slanted spiral microchannels for ultra-fast blood plasma separation, Lab on a Chip, Vol. 16, No. 15, pp. 2791-2802, 2016.
[7]          A. F. Sarioglu, N. Aceto, N. Kojic, M. C. Donaldson, M. Zeinali, B. Hamza, A. Engstrom, H. Zhu, T. K. Sundaresan, D. T. Miyamoto, A microfluidic device for label-free, physical capture of circulating tumor cell clusters, Nature methods, Vol. 12, No. 7, pp. 685-691, 2015.
[8]          Q. Zhao, D. Yuan, J. Zhang, W. Li, A review of secondary flow in inertial microfluidics, Micromachines, Vol. 11, No. 5, pp. 461, 2020.
[9]          A. Najafpour, K. Hosseinzadeh, J. R. Kermani, A. Ranjbar, D. Ganji, Numerical study on the impact of geometrical parameters and employing ternary hybrid nanofluid on the hydrothermal performance of mini-channel heat sink, Journal of Molecular Liquids, Vol. 393, pp. 123616, 2024.
[10]        M. Toner, D. Irimia, Blood-on-a-chip, Annu. Rev. Biomed. Eng., Vol. 7, No. 1, pp. 77-103, 2005.
[11]        S. S. Kuntaegowdanahalli, A. A. S. Bhagat, G. Kumar, I. Papautsky, Inertial microfluidics for continuous particle separation in spiral microchannels, Lab on a Chip, Vol. 9, No. 20, pp. 2973-2980, 2009.
[12]        M. Kersaudy-Kerhoas, R. Dhariwal, M. Desmulliez, Recent advances in microparticle continuous separation, IET nanobiotechnology, Vol. 2, No. 1, pp. 1-13, 2008.
[13]        Z. Wu, K. Hjort, G. Wicher, Å. Fex Svenningsen, Microfluidic high viability neural cell separation using viscoelastically tuned hydrodynamic spreading, Biomedical microdevices, Vol. 10, pp. 631-638, 2008.
[14]        E. Hedlund, J. Pruszak, A. Ferree, A. Viñuela, S. Hong, O. Isacson, K.-S. Kim, Selection of embryonic stem cell-derived enhanced green fluorescent protein-positive dopamine neurons using the tyrosine hydroxylase promoter is confounded by reporter gene expression in immature cell populations, Stem Cells, Vol. 25, No. 5, pp. 1126-1135, 2007.
[15]        R. Nasiri, A. Shamloo, S. Ahadian, L. Amirifar, J. Akbari, M. J. Goudie, K. Lee, N. Ashammakhi, M. R. Dokmeci, D. Di Carlo, Microfluidic‐based approaches in targeted cell/particle separation based on physical properties: fundamentals and applications, Small, Vol. 16, No. 29, pp. 2000171, 2020.
[16]        E. K. Sackmann, A. L. Fulton, D. J. Beebe, The present and future role of microfluidics in biomedical research, Nature, Vol. 507, No. 7491, pp. 181-189, 2014.
[17]        S. Zhang, Y. Wang, P. Onck, J. den Toonder, A concise review of microfluidic particle manipulation methods, Microfluidics and Nanofluidics, Vol. 24, No. 4, pp. 24, 2020.
[18]        J. Hansson, J. M. Karlsson, T. Haraldsson, W. Van Der Wijngaart, A. Russom, Inertial particle focusing in parallel microfluidic channels for high-throughput filtration, in Proceeding of, IEEE, pp. 1777-1780.
[19]        D. Di Carlo, Inertial microfluidics, Lab on a Chip, Vol. 9, No. 21, pp. 3038-3046, 2009.
[20]        J. Zhang, S. Yan, D. Yuan, G. Alici, N.-T. Nguyen, M. E. Warkiani, W. Li, Fundamentals and applications of inertial microfluidics: A review, Lab on a Chip, Vol. 16, No. 1, pp. 10-34, 2016.
[21]        M. E. Warkiani, B. L. Khoo, L. Wu, A. K. P. Tay, A. A. S. Bhagat, J. Han, C. T. Lim, Ultra-fast, label-free isolation of circulating tumor cells from blood using spiral microfluidics, Nature protocols, Vol. 11, No. 1, pp. 134-148, 2016.
[22]        D. Jiang, C. Ni, W. Tang, D. Huang, N. Xiang, Inertial microfluidics in contraction–expansion microchannels: A review, Biomicrofluidics, Vol. 15, No. 4, 2021.
[23]        A. J. Chung, A minireview on inertial microfluidics fundamentals: Inertial particle focusing and secondary flow, BioChip Journal, Vol. 13, No. 1, pp. 53-63, 2019.
[24]        Y. Saffar, S. Kashanj, D. S. Nobes, R. Sabbagh, The physics and manipulation of Dean vortices in single-and two-phase flow in curved microchannels: A review, Micromachines, Vol. 14, No. 12, pp. 2202, 2023.
[25]        J. Su, X. Chen, Y. Zhu, G. Hu, Machine learning assisted fast prediction of inertial lift in microchannels, Lab on a Chip, Vol. 21, No. 13, pp. 2544-2556, 2021.
[26]        C. Liu, G. Hu, X. Jiang, J. Sun, Inertial focusing of spherical particles in rectangular microchannels over a wide range of Reynolds numbers, Lab on a Chip, Vol. 15, No. 4, pp. 1168-1177, 2015.
[27]        N. Liu, C. Petchakup, H. M. Tay, K. H. H. Li, H. W. Hou, Spiral inertial microfluidics for cell separation and biomedical applications, Applications of Microfluidic Systems in Biology and Medicine, pp. 99-150, 2019.
[28]        W. R. Dean, Fluid motion in a curved channel, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, Vol. 121, No. 787, pp. 402-420, 1928.
[29]        D. Farajpour, A review on the mechanics of inertial microfluidics, Journal of Computational Applied Mechanics, Vol. 52, No. 1, pp. 168-192, 2021.
[30]        I. H. Karampelas, J. Gómez-Pastora, Novel approaches concerning the numerical modeling of particle and cell separation in microchannels: A review, Processes, Vol. 10, No. 6, pp. 1226, 2022.
[31]        K. Hood, S. Kahkeshani, D. Di Carlo, M. Roper, Direct measurement of particle inertial migration in rectangular microchannels, Lab on a Chip, Vol. 16, No. 15, pp. 2840-2850, 2016.
[32]        B. Ho, L. Leal, Migration of rigid spheres in a two-dimensional unidirectional shear flow of a second-order fluid, Journal of Fluid Mechanics, Vol. 76, No. 4, pp. 783-799, 1976.
[33]        P. G. Saffman, The lift on a small sphere in a slow shear flow, Journal of fluid mechanics, Vol. 22, No. 2, pp. 385-400, 1965.
[34]        C. K. Tam, W. A. Hyman, Transverse motion of an elastic sphere in a shear field, Journal of Fluid Mechanics, Vol. 59, No. 1, pp. 177-185, 1973.
[35]        E. S. Asmolov, The inertial lift on a spherical particle in a plane Poiseuille flow at large channel Reynolds number, Journal of fluid mechanics, Vol. 381, pp. 63-87, 1999.
[36]        D. Di Carlo, J. F. Edd, K. J. Humphry, H. A. Stone, M. Toner, Particle segregation and dynamics in confined flows, Physical review letters, Vol. 102, No. 9, pp. 094503, 2009.
[37]        K. Hood, S. Lee, M. Roper, Inertial migration of a rigid sphere in three-dimensional Poiseuille flow, Journal of Fluid Mechanics, Vol. 765, pp. 452-479, 2015.
[38]        J. Su, X. Zheng, G. Hu, New explicit formula for inertial lift in confined flows, Physics of Fluids, Vol. 35, No. 9, 2023.
[39]        S. R. Bazaz, A. Mashhadian, A. Ehsani, S. C. Saha, T. Krüger, M. E. Warkiani, Computational inertial microfluidics: a review, Lab on a Chip, Vol. 20, No. 6, pp. 1023-1048, 2020.
[40]        H. W. Hou, M. E. Warkiani, B. L. Khoo, Z. R. Li, R. A. Soo, D. S.-W. Tan, W.-T. Lim, J. Han, A. A. S. Bhagat, C. T. Lim, Isolation and retrieval of circulating tumor cells using centrifugal forces, Scientific reports, Vol. 3, No. 1, pp. 1259, 2013.
[41]        H. Gaur, B. Khidhir, R. K. Manchiryal, Solution of structural mechanic's problems by machine learning, International Journal of Hydromechatronics, Vol. 5, No. 1, pp. 22-43, 2022.
[42]        Y. Shi, Q. Shi, X. Cao, B. Li, X. Sun, D. K. Gerontitis, An advanced discrete‐time RNN for handling discrete time‐varying matrix inversion: Form model design to disturbance‐suppression analysis, CAAI Transactions on Intelligence Technology, Vol. 8, No. 3, pp. 607-621, 2023.
[43]        C. Shen, Q. Zheng, M. Shang, L. Zha, Y. Su, Using deep learning to recognize liquid–liquid flow patterns in microchannels, AIChE Journal, Vol. 66, No. 8, pp. e16260, 2020.
[44]        M. Gheisari, F. Ebrahimzadeh, M. Rahimi, M. Moazzamigodarzi, Y. Liu, P. K. Dutta Pramanik, M. A. Heravi, A. Mehbodniya, M. Ghaderzadeh, M. R. Feylizadeh, Deep learning: Applications, architectures, models, tools, and frameworks: A comprehensive survey, CAAI Transactions on Intelligence Technology, Vol. 8, No. 3, pp. 581-606, 2023.
[45]        C. Luo, KELL: A kernel-embedded local learning for data-intensive modeling, in Proceeding of, 38-44.
[46]        B. Liu, W. Lu, Surrogate models in machine learning for computational stochastic multi-scale modelling in composite materials design, International Journal of Hydromechatronics, Vol. 5, No. 4, pp. 336-365, 2022.
[47]        S. J. Raymond, D. J. Collins, R. O’Rorke, M. Tayebi, Y. Ai, J. Williams, A deep learning approach for designed diffraction-based acoustic patterning in microchannels, Scientific reports, Vol. 10, No. 1, pp. 8745, 2020.
[48]        A. A. S. Bhagat, S. S. Kuntaegowdanahalli, I. Papautsky, Continuous particle separation in spiral microchannels using dean flows and differential migration, Lab on a Chip, Vol. 8, No. 11, pp. 1906-1914, 2008.
[49]        D. H. Yoon, J. B. Ha, Y. K. Bahk, T. Arakawa, S. Shoji, J. S. Go, Size-selective separation of micro beads by utilizing secondary flow in a curved rectangular microchannel, Lab on a Chip, Vol. 9, No. 1, pp. 87-90, 2009.
[50]        E. Guzniczak, T. Krüger, H. Bridle, M. Jimenez, Limitation of spiral microchannels for particle separation in heterogeneous mixtures: Impact of particles’ size and deformability, Biomicrofluidics, Vol. 14, No. 4, 2020.
[51]        J. M. Martel, M. Toner, Inertial focusing dynamics in spiral microchannels, physics of fluids, Vol. 24, No. 3, 2012.
[52]        N. Nivedita, P. Ligrani, I. Papautsky, Dean flow dynamics in low-aspect ratio spiral microchannels, Scientific Reports, Vol. 7, No. 1, pp. 44072, 2017.
[53]        J. Cruz, K. Hjort, High-resolution particle separation by inertial focusing in high aspect ratio curved microfluidics, Scientific Reports, Vol. 11, No. 1, pp. 13959, 2021.
[54]        S. Ramya, S. P. Kumar, G. D. Ram, D. Lingaraja, A short review of spiral microfluidic devices with distinct cross-sectional geometries, Microfluidics and Nanofluidics, Vol. 26, No. 12, pp. 95, 2022.
[55]        A. a. Al-Halhouli, W. Al-Faqheri, B. Alhamarneh, L. Hecht, A. Dietzel, Spiral microchannels with trapezoidal cross section fabricated by femtosecond laser ablation in glass for the inertial separation of microparticles, Micromachines, Vol. 9, No. 4, pp. 171, 2018.
[56]        S. Ghadami, R. Kowsari-Esfahan, M. S. Saidi, K. Firoozbakhsh, Spiral microchannel with stair-like cross section for size-based particle separation, Microfluidics and Nanofluidics, Vol. 21, pp. 1-10, 2017.
[57]        L.-L. Fan, Y. Han, X.-K. He, L. Zhao, J. Zhe, High-throughput, single-stream microparticle focusing using a microchannel with asymmetric sharp corners, Microfluidics and nanofluidics, Vol. 17, pp. 639-646, 2014.
[58]        N. Nivedita, I. Papautsky, Continuous separation of blood cells in spiral microfluidic devices, Biomicrofluidics, Vol. 7, No. 5, 2013.
[59]        A. Mihandoust, S. Razavi Bazaz, N. Maleki-Jirsaraei, M. Alizadeh, R. A. Taylor, M. Ebrahimi Warkiani, High-throughput particle concentration using complex cross-section microchannels, Micromachines, Vol. 11, No. 4, pp. 440, 2020.
[60]        S. Shen, C. Tian, T. Li, J. Xu, S.-W. Chen, Q. Tu, M.-S. Yuan, W. Liu, J. Wang, Spiral microchannel with ordered micro-obstacles for continuous and highly-efficient particle separation, Lab on a Chip, Vol. 17, No. 21, pp. 3578-3591, 2017.
[61]        Y. Gou, S. Zhang, C. Sun, P. Wang, Z. You, Y. Yalikun, Y. Tanaka, D. Ren, Sheathless inertial focusing chip combining a spiral channel with periodic expansion structures for efficient and stable particle sorting, Analytical chemistry, Vol. 92, No. 2, pp. 1833-1841, 2019.
[62]        K. Erdem, V. E. Ahmadi, A. Kosar, L. Kuddusi, Differential sorting of microparticles using spiral microchannels with elliptic configurations, Micromachines, Vol. 11, No. 4, pp. 412, 2020.
[63]        A. Gangadhar, S. A. Vanapalli, Inertial focusing of particles and cells in the microfluidic labyrinth device: Role of sharp turns, Biomicrofluidics, Vol. 16, No. 4, 2022.
[64]        S. Ebrahimi, M. Alishiri, E. Pishbin, H. Afjoul, A. Shamloo, A curved expansion-contraction microfluidic structure for inertial based separation of circulating tumor cells from blood samples, Journal of Chromatography A, Vol. 1705, pp. 464200, 2023.
[65]        S. C. Saha, I. Francis, T. Nassir, Computational Inertial Microfluidics: Optimal Design for Particle Separation, Fluids, Vol. 7, No. 9, pp. 308, 2022.
[66]        T. Kim, H. Yoon, S. Nagrath, Optimization approach for inertial focusing and separation of cells in spiral microchannels, in Proceeding of, 26-30.
[67]        S. Prakash, S. Kumar, Fabrication of microchannels: a review, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Vol. 229, No. 8, pp. 1273-1288, 2015.
[68]        L.-J. Pan, J.-W. Tu, H.-T. Ma, Y.-J. Yang, Z.-Q. Tian, D.-W. Pang, Z.-L. Zhang, Controllable synthesis of nanocrystals in droplet reactors, Lab on a Chip, Vol. 18, No. 1, pp. 41-56, 2018.
[69]        A. Olanrewaju, M. Beaugrand, M. Yafia, D. Juncker, Capillary microfluidics in microchannels: from microfluidic networks to capillaric circuits, Lab on a Chip, Vol. 18, No. 16, pp. 2323-2347, 2018.
[70]        D. Sticker, R. Geczy, U. O. Hafeli, J. P. Kutter, Thiol–ene based polymers as versatile materials for microfluidic devices for life sciences applications, ACS applied materials & interfaces, Vol. 12, No. 9, pp. 10080-10095, 2020.
[71]        A. Shakeri, N. A. Jarad, A. Leung, L. Soleymani, T. F. Didar, Biofunctionalization of glass‐and paper‐based microfluidic devices: a review, Advanced Materials Interfaces, Vol. 6, No. 19, pp. 1900940, 2019.
[72]        A.-G. Niculescu, C. Chircov, A. C. Bîrcă, A. M. Grumezescu, Fabrication and applications of microfluidic devices: A review, International Journal of Molecular Sciences, Vol. 22, No. 4, pp. 2011, 2021.
[73]        V. Sebastián Cabeza, Advances in microfluidics-New applications in biology, energy, and materials sciences. Chap 17: High and Efficient Production of Nanomaterials by Microfluidic Reactor Approaches,  9535127853, IntechOpen,  pp. 2016.
[74]        A. Singh, C. K. Malek, S. K. Kulkarni, Development in microreactor technology for nanoparticle synthesis, International Journal of Nanoscience, Vol. 9, No. 01n02, pp. 93-112, 2010.
[75]        M. James, R. A. Revia, Z. Stephen, M. Zhang, Microfluidic synthesis of iron oxide nanoparticles, Nanomaterials, Vol. 10, No. 11, pp. 2113, 2020.
[76]        K. Ren, J. Zhou, H. Wu, Materials for microfluidic chip fabrication, Accounts of chemical research, Vol. 46, No. 11, pp. 2396-2406, 2013.
[77]        J. B. Nielsen, R. L. Hanson, H. M. Almughamsi, C. Pang, T. R. Fish, A. T. Woolley, Microfluidics: innovations in materials and their fabrication and functionalization, Analytical chemistry, Vol. 92, No. 1, pp. 150-168, 2019.
[78]        C. Rivet, H. Lee, A. Hirsch, S. Hamilton, H. Lu, Microfluidics for medical diagnostics and biosensors, Chemical Engineering Science, Vol. 66, No. 7, pp. 1490-1507, 2011.
[79]        S. B. Campbell, Q. Wu, J. Yazbeck, C. Liu, S. Okhovatian, M. Radisic, Beyond polydimethylsiloxane: alternative materials for fabrication of organ-on-a-chip devices and microphysiological systems, ACS biomaterials science & engineering, Vol. 7, No. 7, pp. 2880-2899, 2020.
[80]        F. Kotz, M. Mader, N. Dellen, P. Risch, A. Kick, D. Helmer, B. E. Rapp, Fused deposition modeling of microfluidic chips in polymethylmethacrylate, Micromachines, Vol. 11, No. 9, pp. 873, 2020.
[81]        P. Sengupta, K. Khanra, A. R. Chowdhury, P. Datta, Lab-on-a-chip sensing devices for biomedical applications,  in: Bioelectronics and medical devices, Eds., pp. 47-95: Elsevier, 2019.
[82]        M. A. Mofazzal Jahromi, A. Abdoli, M. Rahmanian, H. Bardania, M. Bayandori, S. M. Moosavi Basri, A. Kalbasi, A. R. Aref, M. Karimi, M. R. Hamblin, Microfluidic brain-on-a-chip: perspectives for mimicking neural system disorders, Molecular neurobiology, Vol. 56, pp. 8489-8512, 2019.
[83]        J. Deng, W. Wei, Z. Chen, B. Lin, W. Zhao, Y. Luo, X. Zhang, Engineered liver-on-a-chip platform to mimic liver functions and its biomedical applications: A review, Micromachines, Vol. 10, No. 10, pp. 676, 2019.
[84]        S. P. Kojic, G. M. Stojanovic, V. Radonic, Novel cost-effective microfluidic chip based on hybrid fabrication and its comprehensive characterization, Sensors, Vol. 19, No. 7, pp. 1719, 2019.
[85]        Y. Gao, G. Stybayeva, A. Revzin, Fabrication of composite microfluidic devices for local control of oxygen tension in cell cultures, Lab on a Chip, Vol. 19, No. 2, pp. 306-315, 2019.
[86]        J. Hwang, Y. H. Cho, M. S. Park, B. H. Kim, Microchannel fabrication on glass materials for microfluidic devices, International Journal of Precision Engineering and Manufacturing, Vol. 20, pp. 479-495, 2019.
[87]        C. Iliescu, H. Taylor, M. Avram, J. Miao, S. Franssila, A practical guide for the fabrication of microfluidic devices using glass and silicon, Biomicrofluidics, Vol. 6, No. 1, 2012.
[88]        C. A. Baker, R. Bulloch, M. G. Roper, Comparison of separation performance of laser-ablated and wet-etched microfluidic devices, Analytical and bioanalytical chemistry, Vol. 399, pp. 1473-1479, 2011.
[89]        G. S. Fiorini, D. T. Chiu, Disposable microfluidic devices: fabrication, function, and application, BioTechniques, Vol. 38, No. 3, pp. 429-446, 2005.
[90]        E. A. Waddell, Laser ablation as a fabrication technique for microfluidic devices, Microfluidic Techniques: Reviews and Protocols, pp. 27-38, 2006.
[91]        V. Faustino, S. O. Catarino, R. Lima, G. Minas, Biomedical microfluidic devices by using low-cost fabrication techniques: A review, Journal of biomechanics, Vol. 49, No. 11, pp. 2280-2292, 2016.
[92]        D. J. Guckenberger, T. E. De Groot, A. M. Wan, D. J. Beebe, E. W. Young, Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices, Lab on a Chip, Vol. 15, No. 11, pp. 2364-2378, 2015.
[93]        A. L. Jáuregui, H. R. Siller, C. A. Rodríguez, A. Elías-Zúñiga, Evaluation of micromechanical manufacturing processes for microfluidic devices, The International Journal of Advanced Manufacturing Technology, Vol. 48, pp. 963-972, 2010.
[94]        U. M. Attia, S. Marson, J. R. Alcock, Micro-injection moulding of polymer microfluidic devices, Microfluidics and nanofluidics, Vol. 7, pp. 1-28, 2009.
[95]        B. K. Gale, A. R. Jafek, C. J. Lambert, B. L. Goenner, H. Moghimifam, U. C. Nze, S. K. Kamarapu, A review of current methods in microfluidic device fabrication and future commercialization prospects, Inventions, Vol. 3, No. 3, pp. 60, 2018.
[96]        W. Su, B. S. Cook, Y. Fang, M. M. Tentzeris, Fully inkjet-printed microfluidics: a solution to low-cost rapid three-dimensional microfluidics fabrication with numerous electrical and sensing applications, Scientific reports, Vol. 6, No. 1, pp. 35111, 2016.
[97]        P. Kim, K. W. Kwon, M. C. Park, S. H. Lee, S. M. Kim, K. Y. Suh, Soft lithography for microfluidics: a review, 2008.
[98]        K. L. Wlodarczyk, R. M. Carter, A. Jahanbakhsh, A. A. Lopes, M. D. Mackenzie, R. R. Maier, D. P. Hand, M. M. Maroto-Valer, Rapid laser manufacturing of microfluidic devices from glass substrates, Micromachines, Vol. 9, No. 8, pp. 409, 2018.
[99]        O. Skurtys, J. Aguilera, Applications of microfluidic devices in food engineering, Food Biophysics, Vol. 3, pp. 1-15, 2008.
[100]     C. Dixon, J. Lamanna, A. R. Wheeler, Printed microfluidics, Advanced Functional Materials, Vol. 27, No. 11, pp. 1604824, 2017.
[101]     Y. Alapan, M. N. Hasan, R. Shen, U. A. Gurkan, Three-dimensional printing based hybrid manufacturing of microfluidic devices, Journal of Nanotechnology in Engineering and Medicine, Vol. 6, No. 2, pp. 021007, 2015.
Volume 55, Issue 4
October 2024
Pages 783-811
  • Receive Date: 20 May 2024
  • Revise Date: 06 July 2024
  • Accept Date: 11 July 2024