[1] D. R. Gossett, W. M. Weaver, A. J. Mach, S. C. Hur, H. T. K. Tse, W. Lee, H. Amini, D. Di Carlo, Label-free cell separation and sorting in microfluidic systems, Analytical and bioanalytical chemistry, Vol. 397, pp. 3249-3267, 2010.
[2] J. Nilsson, M. Evander, B. Hammarström, T. Laurell, Review of cell and particle trapping in microfluidic systems, Analytica chimica acta, Vol. 649, No. 2, pp. 141-157, 2009.
[3] P. S. Dittrich, A. Manz, Lab-on-a-chip: microfluidics in drug discovery, Nature reviews Drug discovery, Vol. 5, No. 3, pp. 210-218, 2006.
[4] A. Shenoy, C. V. Rao, C. M. Schroeder, Stokes trap for multiplexed particle manipulation and assembly using fluidics, Proceedings of the National Academy of Sciences, Vol. 113, No. 15, pp. 3976-3981, 2016.
[5] F. Guo, Z. Mao, Y. Chen, Z. Xie, J. P. Lata, P. Li, L. Ren, J. Liu, J. Yang, M. Dao, Three-dimensional manipulation of single cells using surface acoustic waves, Proceedings of the National Academy of Sciences, Vol. 113, No. 6, pp. 1522-1527, 2016.
[6] M. Rafeie, J. Zhang, M. Asadnia, W. Li, M. E. Warkiani, Multiplexing slanted spiral microchannels for ultra-fast blood plasma separation, Lab on a Chip, Vol. 16, No. 15, pp. 2791-2802, 2016.
[7] A. F. Sarioglu, N. Aceto, N. Kojic, M. C. Donaldson, M. Zeinali, B. Hamza, A. Engstrom, H. Zhu, T. K. Sundaresan, D. T. Miyamoto, A microfluidic device for label-free, physical capture of circulating tumor cell clusters, Nature methods, Vol. 12, No. 7, pp. 685-691, 2015.
[8] Q. Zhao, D. Yuan, J. Zhang, W. Li, A review of secondary flow in inertial microfluidics, Micromachines, Vol. 11, No. 5, pp. 461, 2020.
[9] A. Najafpour, K. Hosseinzadeh, J. R. Kermani, A. Ranjbar, D. Ganji, Numerical study on the impact of geometrical parameters and employing ternary hybrid nanofluid on the hydrothermal performance of mini-channel heat sink, Journal of Molecular Liquids, Vol. 393, pp. 123616, 2024.
[10] M. Toner, D. Irimia, Blood-on-a-chip, Annu. Rev. Biomed. Eng., Vol. 7, No. 1, pp. 77-103, 2005.
[11] S. S. Kuntaegowdanahalli, A. A. S. Bhagat, G. Kumar, I. Papautsky, Inertial microfluidics for continuous particle separation in spiral microchannels, Lab on a Chip, Vol. 9, No. 20, pp. 2973-2980, 2009.
[12] M. Kersaudy-Kerhoas, R. Dhariwal, M. Desmulliez, Recent advances in microparticle continuous separation, IET nanobiotechnology, Vol. 2, No. 1, pp. 1-13, 2008.
[13] Z. Wu, K. Hjort, G. Wicher, Å. Fex Svenningsen, Microfluidic high viability neural cell separation using viscoelastically tuned hydrodynamic spreading, Biomedical microdevices, Vol. 10, pp. 631-638, 2008.
[14] E. Hedlund, J. Pruszak, A. Ferree, A. Viñuela, S. Hong, O. Isacson, K.-S. Kim, Selection of embryonic stem cell-derived enhanced green fluorescent protein-positive dopamine neurons using the tyrosine hydroxylase promoter is confounded by reporter gene expression in immature cell populations, Stem Cells, Vol. 25, No. 5, pp. 1126-1135, 2007.
[15] R. Nasiri, A. Shamloo, S. Ahadian, L. Amirifar, J. Akbari, M. J. Goudie, K. Lee, N. Ashammakhi, M. R. Dokmeci, D. Di Carlo, Microfluidic‐based approaches in targeted cell/particle separation based on physical properties: fundamentals and applications, Small, Vol. 16, No. 29, pp. 2000171, 2020.
[16] E. K. Sackmann, A. L. Fulton, D. J. Beebe, The present and future role of microfluidics in biomedical research, Nature, Vol. 507, No. 7491, pp. 181-189, 2014.
[17] S. Zhang, Y. Wang, P. Onck, J. den Toonder, A concise review of microfluidic particle manipulation methods, Microfluidics and Nanofluidics, Vol. 24, No. 4, pp. 24, 2020.
[18] J. Hansson, J. M. Karlsson, T. Haraldsson, W. Van Der Wijngaart, A. Russom, Inertial particle focusing in parallel microfluidic channels for high-throughput filtration, in Proceeding of, IEEE, pp. 1777-1780.
[19] D. Di Carlo, Inertial microfluidics, Lab on a Chip, Vol. 9, No. 21, pp. 3038-3046, 2009.
[20] J. Zhang, S. Yan, D. Yuan, G. Alici, N.-T. Nguyen, M. E. Warkiani, W. Li, Fundamentals and applications of inertial microfluidics: A review, Lab on a Chip, Vol. 16, No. 1, pp. 10-34, 2016.
[21] M. E. Warkiani, B. L. Khoo, L. Wu, A. K. P. Tay, A. A. S. Bhagat, J. Han, C. T. Lim, Ultra-fast, label-free isolation of circulating tumor cells from blood using spiral microfluidics, Nature protocols, Vol. 11, No. 1, pp. 134-148, 2016.
[22] D. Jiang, C. Ni, W. Tang, D. Huang, N. Xiang, Inertial microfluidics in contraction–expansion microchannels: A review, Biomicrofluidics, Vol. 15, No. 4, 2021.
[23] A. J. Chung, A minireview on inertial microfluidics fundamentals: Inertial particle focusing and secondary flow, BioChip Journal, Vol. 13, No. 1, pp. 53-63, 2019.
[24] Y. Saffar, S. Kashanj, D. S. Nobes, R. Sabbagh, The physics and manipulation of Dean vortices in single-and two-phase flow in curved microchannels: A review, Micromachines, Vol. 14, No. 12, pp. 2202, 2023.
[25] J. Su, X. Chen, Y. Zhu, G. Hu, Machine learning assisted fast prediction of inertial lift in microchannels, Lab on a Chip, Vol. 21, No. 13, pp. 2544-2556, 2021.
[26] C. Liu, G. Hu, X. Jiang, J. Sun, Inertial focusing of spherical particles in rectangular microchannels over a wide range of Reynolds numbers, Lab on a Chip, Vol. 15, No. 4, pp. 1168-1177, 2015.
[27] N. Liu, C. Petchakup, H. M. Tay, K. H. H. Li, H. W. Hou, Spiral inertial microfluidics for cell separation and biomedical applications, Applications of Microfluidic Systems in Biology and Medicine, pp. 99-150, 2019.
[28] W. R. Dean, Fluid motion in a curved channel, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, Vol. 121, No. 787, pp. 402-420, 1928.
[29] D. Farajpour, A review on the mechanics of inertial microfluidics, Journal of Computational Applied Mechanics, Vol. 52, No. 1, pp. 168-192, 2021.
[30] I. H. Karampelas, J. Gómez-Pastora, Novel approaches concerning the numerical modeling of particle and cell separation in microchannels: A review, Processes, Vol. 10, No. 6, pp. 1226, 2022.
[31] K. Hood, S. Kahkeshani, D. Di Carlo, M. Roper, Direct measurement of particle inertial migration in rectangular microchannels, Lab on a Chip, Vol. 16, No. 15, pp. 2840-2850, 2016.
[32] B. Ho, L. Leal, Migration of rigid spheres in a two-dimensional unidirectional shear flow of a second-order fluid, Journal of Fluid Mechanics, Vol. 76, No. 4, pp. 783-799, 1976.
[33] P. G. Saffman, The lift on a small sphere in a slow shear flow, Journal of fluid mechanics, Vol. 22, No. 2, pp. 385-400, 1965.
[34] C. K. Tam, W. A. Hyman, Transverse motion of an elastic sphere in a shear field, Journal of Fluid Mechanics, Vol. 59, No. 1, pp. 177-185, 1973.
[35] E. S. Asmolov, The inertial lift on a spherical particle in a plane Poiseuille flow at large channel Reynolds number, Journal of fluid mechanics, Vol. 381, pp. 63-87, 1999.
[36] D. Di Carlo, J. F. Edd, K. J. Humphry, H. A. Stone, M. Toner, Particle segregation and dynamics in confined flows, Physical review letters, Vol. 102, No. 9, pp. 094503, 2009.
[37] K. Hood, S. Lee, M. Roper, Inertial migration of a rigid sphere in three-dimensional Poiseuille flow, Journal of Fluid Mechanics, Vol. 765, pp. 452-479, 2015.
[38] J. Su, X. Zheng, G. Hu, New explicit formula for inertial lift in confined flows, Physics of Fluids, Vol. 35, No. 9, 2023.
[39] S. R. Bazaz, A. Mashhadian, A. Ehsani, S. C. Saha, T. Krüger, M. E. Warkiani, Computational inertial microfluidics: a review, Lab on a Chip, Vol. 20, No. 6, pp. 1023-1048, 2020.
[40] H. W. Hou, M. E. Warkiani, B. L. Khoo, Z. R. Li, R. A. Soo, D. S.-W. Tan, W.-T. Lim, J. Han, A. A. S. Bhagat, C. T. Lim, Isolation and retrieval of circulating tumor cells using centrifugal forces, Scientific reports, Vol. 3, No. 1, pp. 1259, 2013.
[41] H. Gaur, B. Khidhir, R. K. Manchiryal, Solution of structural mechanic's problems by machine learning, International Journal of Hydromechatronics, Vol. 5, No. 1, pp. 22-43, 2022.
[42] Y. Shi, Q. Shi, X. Cao, B. Li, X. Sun, D. K. Gerontitis, An advanced discrete‐time RNN for handling discrete time‐varying matrix inversion: Form model design to disturbance‐suppression analysis, CAAI Transactions on Intelligence Technology, Vol. 8, No. 3, pp. 607-621, 2023.
[43] C. Shen, Q. Zheng, M. Shang, L. Zha, Y. Su, Using deep learning to recognize liquid–liquid flow patterns in microchannels, AIChE Journal, Vol. 66, No. 8, pp. e16260, 2020.
[44] M. Gheisari, F. Ebrahimzadeh, M. Rahimi, M. Moazzamigodarzi, Y. Liu, P. K. Dutta Pramanik, M. A. Heravi, A. Mehbodniya, M. Ghaderzadeh, M. R. Feylizadeh, Deep learning: Applications, architectures, models, tools, and frameworks: A comprehensive survey, CAAI Transactions on Intelligence Technology, Vol. 8, No. 3, pp. 581-606, 2023.
[45] C. Luo, KELL: A kernel-embedded local learning for data-intensive modeling, in Proceeding of, 38-44.
[46] B. Liu, W. Lu, Surrogate models in machine learning for computational stochastic multi-scale modelling in composite materials design, International Journal of Hydromechatronics, Vol. 5, No. 4, pp. 336-365, 2022.
[47] S. J. Raymond, D. J. Collins, R. O’Rorke, M. Tayebi, Y. Ai, J. Williams, A deep learning approach for designed diffraction-based acoustic patterning in microchannels, Scientific reports, Vol. 10, No. 1, pp. 8745, 2020.
[48] A. A. S. Bhagat, S. S. Kuntaegowdanahalli, I. Papautsky, Continuous particle separation in spiral microchannels using dean flows and differential migration, Lab on a Chip, Vol. 8, No. 11, pp. 1906-1914, 2008.
[49] D. H. Yoon, J. B. Ha, Y. K. Bahk, T. Arakawa, S. Shoji, J. S. Go, Size-selective separation of micro beads by utilizing secondary flow in a curved rectangular microchannel, Lab on a Chip, Vol. 9, No. 1, pp. 87-90, 2009.
[50] E. Guzniczak, T. Krüger, H. Bridle, M. Jimenez, Limitation of spiral microchannels for particle separation in heterogeneous mixtures: Impact of particles’ size and deformability, Biomicrofluidics, Vol. 14, No. 4, 2020.
[51] J. M. Martel, M. Toner, Inertial focusing dynamics in spiral microchannels, physics of fluids, Vol. 24, No. 3, 2012.
[52] N. Nivedita, P. Ligrani, I. Papautsky, Dean flow dynamics in low-aspect ratio spiral microchannels, Scientific Reports, Vol. 7, No. 1, pp. 44072, 2017.
[53] J. Cruz, K. Hjort, High-resolution particle separation by inertial focusing in high aspect ratio curved microfluidics, Scientific Reports, Vol. 11, No. 1, pp. 13959, 2021.
[54] S. Ramya, S. P. Kumar, G. D. Ram, D. Lingaraja, A short review of spiral microfluidic devices with distinct cross-sectional geometries, Microfluidics and Nanofluidics, Vol. 26, No. 12, pp. 95, 2022.
[55] A. a. Al-Halhouli, W. Al-Faqheri, B. Alhamarneh, L. Hecht, A. Dietzel, Spiral microchannels with trapezoidal cross section fabricated by femtosecond laser ablation in glass for the inertial separation of microparticles, Micromachines, Vol. 9, No. 4, pp. 171, 2018.
[56] S. Ghadami, R. Kowsari-Esfahan, M. S. Saidi, K. Firoozbakhsh, Spiral microchannel with stair-like cross section for size-based particle separation, Microfluidics and Nanofluidics, Vol. 21, pp. 1-10, 2017.
[57] L.-L. Fan, Y. Han, X.-K. He, L. Zhao, J. Zhe, High-throughput, single-stream microparticle focusing using a microchannel with asymmetric sharp corners, Microfluidics and nanofluidics, Vol. 17, pp. 639-646, 2014.
[58] N. Nivedita, I. Papautsky, Continuous separation of blood cells in spiral microfluidic devices, Biomicrofluidics, Vol. 7, No. 5, 2013.
[59] A. Mihandoust, S. Razavi Bazaz, N. Maleki-Jirsaraei, M. Alizadeh, R. A. Taylor, M. Ebrahimi Warkiani, High-throughput particle concentration using complex cross-section microchannels, Micromachines, Vol. 11, No. 4, pp. 440, 2020.
[60] S. Shen, C. Tian, T. Li, J. Xu, S.-W. Chen, Q. Tu, M.-S. Yuan, W. Liu, J. Wang, Spiral microchannel with ordered micro-obstacles for continuous and highly-efficient particle separation, Lab on a Chip, Vol. 17, No. 21, pp. 3578-3591, 2017.
[61] Y. Gou, S. Zhang, C. Sun, P. Wang, Z. You, Y. Yalikun, Y. Tanaka, D. Ren, Sheathless inertial focusing chip combining a spiral channel with periodic expansion structures for efficient and stable particle sorting, Analytical chemistry, Vol. 92, No. 2, pp. 1833-1841, 2019.
[62] K. Erdem, V. E. Ahmadi, A. Kosar, L. Kuddusi, Differential sorting of microparticles using spiral microchannels with elliptic configurations, Micromachines, Vol. 11, No. 4, pp. 412, 2020.
[63] A. Gangadhar, S. A. Vanapalli, Inertial focusing of particles and cells in the microfluidic labyrinth device: Role of sharp turns, Biomicrofluidics, Vol. 16, No. 4, 2022.
[64] S. Ebrahimi, M. Alishiri, E. Pishbin, H. Afjoul, A. Shamloo, A curved expansion-contraction microfluidic structure for inertial based separation of circulating tumor cells from blood samples, Journal of Chromatography A, Vol. 1705, pp. 464200, 2023.
[65] S. C. Saha, I. Francis, T. Nassir, Computational Inertial Microfluidics: Optimal Design for Particle Separation, Fluids, Vol. 7, No. 9, pp. 308, 2022.
[66] T. Kim, H. Yoon, S. Nagrath, Optimization approach for inertial focusing and separation of cells in spiral microchannels, in Proceeding of, 26-30.
[67] S. Prakash, S. Kumar, Fabrication of microchannels: a review, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Vol. 229, No. 8, pp. 1273-1288, 2015.
[68] L.-J. Pan, J.-W. Tu, H.-T. Ma, Y.-J. Yang, Z.-Q. Tian, D.-W. Pang, Z.-L. Zhang, Controllable synthesis of nanocrystals in droplet reactors, Lab on a Chip, Vol. 18, No. 1, pp. 41-56, 2018.
[69] A. Olanrewaju, M. Beaugrand, M. Yafia, D. Juncker, Capillary microfluidics in microchannels: from microfluidic networks to capillaric circuits, Lab on a Chip, Vol. 18, No. 16, pp. 2323-2347, 2018.
[70] D. Sticker, R. Geczy, U. O. Hafeli, J. P. Kutter, Thiol–ene based polymers as versatile materials for microfluidic devices for life sciences applications, ACS applied materials & interfaces, Vol. 12, No. 9, pp. 10080-10095, 2020.
[71] A. Shakeri, N. A. Jarad, A. Leung, L. Soleymani, T. F. Didar, Biofunctionalization of glass‐and paper‐based microfluidic devices: a review, Advanced Materials Interfaces, Vol. 6, No. 19, pp. 1900940, 2019.
[72] A.-G. Niculescu, C. Chircov, A. C. Bîrcă, A. M. Grumezescu, Fabrication and applications of microfluidic devices: A review, International Journal of Molecular Sciences, Vol. 22, No. 4, pp. 2011, 2021.
[73] V. Sebastián Cabeza, Advances in microfluidics-New applications in biology, energy, and materials sciences. Chap 17: High and Efficient Production of Nanomaterials by Microfluidic Reactor Approaches, 9535127853, IntechOpen, pp. 2016.
[74] A. Singh, C. K. Malek, S. K. Kulkarni, Development in microreactor technology for nanoparticle synthesis, International Journal of Nanoscience, Vol. 9, No. 01n02, pp. 93-112, 2010.
[75] M. James, R. A. Revia, Z. Stephen, M. Zhang, Microfluidic synthesis of iron oxide nanoparticles, Nanomaterials, Vol. 10, No. 11, pp. 2113, 2020.
[76] K. Ren, J. Zhou, H. Wu, Materials for microfluidic chip fabrication, Accounts of chemical research, Vol. 46, No. 11, pp. 2396-2406, 2013.
[77] J. B. Nielsen, R. L. Hanson, H. M. Almughamsi, C. Pang, T. R. Fish, A. T. Woolley, Microfluidics: innovations in materials and their fabrication and functionalization, Analytical chemistry, Vol. 92, No. 1, pp. 150-168, 2019.
[78] C. Rivet, H. Lee, A. Hirsch, S. Hamilton, H. Lu, Microfluidics for medical diagnostics and biosensors, Chemical Engineering Science, Vol. 66, No. 7, pp. 1490-1507, 2011.
[79] S. B. Campbell, Q. Wu, J. Yazbeck, C. Liu, S. Okhovatian, M. Radisic, Beyond polydimethylsiloxane: alternative materials for fabrication of organ-on-a-chip devices and microphysiological systems, ACS biomaterials science & engineering, Vol. 7, No. 7, pp. 2880-2899, 2020.
[80] F. Kotz, M. Mader, N. Dellen, P. Risch, A. Kick, D. Helmer, B. E. Rapp, Fused deposition modeling of microfluidic chips in polymethylmethacrylate, Micromachines, Vol. 11, No. 9, pp. 873, 2020.
[81] P. Sengupta, K. Khanra, A. R. Chowdhury, P. Datta, Lab-on-a-chip sensing devices for biomedical applications, in: Bioelectronics and medical devices, Eds., pp. 47-95: Elsevier, 2019.
[82] M. A. Mofazzal Jahromi, A. Abdoli, M. Rahmanian, H. Bardania, M. Bayandori, S. M. Moosavi Basri, A. Kalbasi, A. R. Aref, M. Karimi, M. R. Hamblin, Microfluidic brain-on-a-chip: perspectives for mimicking neural system disorders, Molecular neurobiology, Vol. 56, pp. 8489-8512, 2019.
[83] J. Deng, W. Wei, Z. Chen, B. Lin, W. Zhao, Y. Luo, X. Zhang, Engineered liver-on-a-chip platform to mimic liver functions and its biomedical applications: A review, Micromachines, Vol. 10, No. 10, pp. 676, 2019.
[84] S. P. Kojic, G. M. Stojanovic, V. Radonic, Novel cost-effective microfluidic chip based on hybrid fabrication and its comprehensive characterization, Sensors, Vol. 19, No. 7, pp. 1719, 2019.
[85] Y. Gao, G. Stybayeva, A. Revzin, Fabrication of composite microfluidic devices for local control of oxygen tension in cell cultures, Lab on a Chip, Vol. 19, No. 2, pp. 306-315, 2019.
[86] J. Hwang, Y. H. Cho, M. S. Park, B. H. Kim, Microchannel fabrication on glass materials for microfluidic devices, International Journal of Precision Engineering and Manufacturing, Vol. 20, pp. 479-495, 2019.
[87] C. Iliescu, H. Taylor, M. Avram, J. Miao, S. Franssila, A practical guide for the fabrication of microfluidic devices using glass and silicon, Biomicrofluidics, Vol. 6, No. 1, 2012.
[88] C. A. Baker, R. Bulloch, M. G. Roper, Comparison of separation performance of laser-ablated and wet-etched microfluidic devices, Analytical and bioanalytical chemistry, Vol. 399, pp. 1473-1479, 2011.
[89] G. S. Fiorini, D. T. Chiu, Disposable microfluidic devices: fabrication, function, and application, BioTechniques, Vol. 38, No. 3, pp. 429-446, 2005.
[90] E. A. Waddell, Laser ablation as a fabrication technique for microfluidic devices, Microfluidic Techniques: Reviews and Protocols, pp. 27-38, 2006.
[91] V. Faustino, S. O. Catarino, R. Lima, G. Minas, Biomedical microfluidic devices by using low-cost fabrication techniques: A review, Journal of biomechanics, Vol. 49, No. 11, pp. 2280-2292, 2016.
[92] D. J. Guckenberger, T. E. De Groot, A. M. Wan, D. J. Beebe, E. W. Young, Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices, Lab on a Chip, Vol. 15, No. 11, pp. 2364-2378, 2015.
[93] A. L. Jáuregui, H. R. Siller, C. A. Rodríguez, A. Elías-Zúñiga, Evaluation of micromechanical manufacturing processes for microfluidic devices, The International Journal of Advanced Manufacturing Technology, Vol. 48, pp. 963-972, 2010.
[94] U. M. Attia, S. Marson, J. R. Alcock, Micro-injection moulding of polymer microfluidic devices, Microfluidics and nanofluidics, Vol. 7, pp. 1-28, 2009.
[95] B. K. Gale, A. R. Jafek, C. J. Lambert, B. L. Goenner, H. Moghimifam, U. C. Nze, S. K. Kamarapu, A review of current methods in microfluidic device fabrication and future commercialization prospects, Inventions, Vol. 3, No. 3, pp. 60, 2018.
[96] W. Su, B. S. Cook, Y. Fang, M. M. Tentzeris, Fully inkjet-printed microfluidics: a solution to low-cost rapid three-dimensional microfluidics fabrication with numerous electrical and sensing applications, Scientific reports, Vol. 6, No. 1, pp. 35111, 2016.
[97] P. Kim, K. W. Kwon, M. C. Park, S. H. Lee, S. M. Kim, K. Y. Suh, Soft lithography for microfluidics: a review, 2008.
[98] K. L. Wlodarczyk, R. M. Carter, A. Jahanbakhsh, A. A. Lopes, M. D. Mackenzie, R. R. Maier, D. P. Hand, M. M. Maroto-Valer, Rapid laser manufacturing of microfluidic devices from glass substrates, Micromachines, Vol. 9, No. 8, pp. 409, 2018.
[99] O. Skurtys, J. Aguilera, Applications of microfluidic devices in food engineering, Food Biophysics, Vol. 3, pp. 1-15, 2008.
[100] C. Dixon, J. Lamanna, A. R. Wheeler, Printed microfluidics, Advanced Functional Materials, Vol. 27, No. 11, pp. 1604824, 2017.
[101] Y. Alapan, M. N. Hasan, R. Shen, U. A. Gurkan, Three-dimensional printing based hybrid manufacturing of microfluidic devices, Journal of Nanotechnology in Engineering and Medicine, Vol. 6, No. 2, pp. 021007, 2015.