Parametric Blade Generator Incorporating Bézier Surface Principles and Casing Geometry for Optimal Industrial Centrifugal Slurry Pump Design

Document Type : Research Paper

Authors

1 School of Mechatronics, Simon Fraser University, Surrey Canada

2 Hevvy/Toyo Pumps North America Corporation, Coquitlam Canada

Abstract

Modern pump and turbomachinery design merges innovative methodologies with computational tools for optimal efficiency and adaptability. This study delves into the intricate design of a parametric blade generator using Bézier curves, renowned for their precision in sculpting smooth, user-defined curves, and offering vast prospects in turbomachinery blade design. Leveraging this precision, our methodology employed eight pivotal anchor points to shape the Bézier surface blade: three at the base, three at the top, and two strategically placed midpoints. These midpoints enhance curvature control, ensuring the blade's form encapsulates the desired aerodynamic and fluid flow properties. Using these eight defined points and four bounding curves, the blade's holistic spatial profile was meticulously drafted. The CAD modeling system, with its advanced loft and guide curve functions, was instrumental in generating the blade surface, resulting in an aerodynamically adept profile optimized for maximum flow efficiency. Beyond the blade, the pump casing geometry was another pivotal focus. Adopting a parametric shape generation for the casing ensured system-wide design coherence, minimizing potential operational bottlenecks and inefficiencies. Classical optimization and iterative refinements were applied to the initial design, with each step analyzed to ensure the final model achieved high performance. Traditional blade design methodologies often offer limited flexibility, confining designers to specific templates and forms. However, this methodology provided greater design flexibility and set a new benchmark in performance optimization. As industries continually evolve and demand more from turbomachinery, the methodologies presented herein will be at the forefront, guiding us into an era of enhanced efficiency, adaptability, and innovation.

Keywords

Main Subjects

[1]          K. Alawadhi, B. Alzuwayer, T. A. Mohammad, M. H. Buhemdi, Design and optimization of a centrifugal pump for slurry transport using the response surface method, Machines, Vol. 9, No. 3, pp. 60 %@ 2075-1702, 2021.
[2]          B. M. Adams, W. J. Bohnhoff, K. R. Dalbey, M. S. Ebeida, J. P. Eddy, M. S. Eldred, R. W. Hooper, P. D. Hough, K. T. Hu, J. D. Jakeman, Dakota, a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis: version 6.13 user's manual, Sandia National Lab.(SNL-NM), Albuquerque, NM (United States), 2020.
[3]          D. Song, S. H. Kang, Y. Kim, S. J. Shin, Turbine blade structural analysis by using the isogeometric Bernstein-Bezier discretization, in Proceeding of, 2574.
[4]          R. Nanthini, B. Prasad, Y. Sanyasiraju, Effect of Bezier control points on blade pressure distribution, in Proceeding of, AIP Publishing, pp.
[5]          T. S. Rengma, M. K. Gupta, P. M. V. Subbarao, A novel method of optimizing the Savonius hydrokinetic turbine blades using Bezier curve, Renewable Energy, Vol. 216, pp. 119091 %@ 0960-1481, 2023.
[6]          H. Zhang, L. Tang, Y. Zhao, Influence of blade profiles on plastic centrifugal pump performance, Advances in Materials Science and Engineering, Vol. 2020, No. 1, pp. 6665520 %@ 1687-8442, 2020.
[7]          V. G. Gribin, A. A. Tishchenko, R. A. Alekseev, V. A. Tishchenko, I. Y. Gavrilov, V. V. Popov, A method for parametrically representing the aerodynamic profiles of axial turbine machinery blades, Thermal Engineering, Vol. 67, pp. 422-429 %@ 0040-6015, 2020.
[8]          J. Schiffmann, Integrated design and multi-objective optimization of a single stage heat-pump turbocompressor, Journal of Turbomachinery, Vol. 137, No. 7, pp. 071002 %@ 0889-504X, 2015.
[9]          N. P. Jaiswal, CFD analysis of centrifugal pump: a review, Journal of Engineering Research and Applications, Vol. 4, pp. 175-178, 2014.
[10]        C. C. Xia, Y. J. Gou, S. H. Li, W. F. Chen, C. Shao, An automatic aerodynamic shape optimisation framework based on DAKOTA, in Proceeding of, IOP Publishing, pp. 012021 %@ 1757-899X.
[11]        J. G. Marshall, M. Imregun, A review of aeroelasticity methods with emphasis on turbomachinery applications, Journal of fluids and structures, Vol. 10, No. 3, pp. 237-267 %@ 0889-9746, 1996.
[12]        F. Gagliardi, Shape Parameterization and Constrained Aerodynamic Οptimization. Applications Including Turbomachines, 2020.
[13]        T. Capurso, L. Bergamini, M. Torresi, A new generation of centrifugal pumps for high conversion efficiency, Energy Conversion and Management, Vol. 256, pp. 115341 %@ 0196-8904, 2022.
[14]        D. Harish, R. D. Bharathan, S. Kapil, S. V. Ramana Murthy, D. Kishore Prasad, Aerodynamic Design of Axial Flow Turbine for a Small Gas Turbine Engine, in Proceeding of, Springer, pp. 99-111.
[15]        G. E. Farin, 2002, Curves and surfaces for CAGD: a practical guide, Morgan Kaufmann,
[16]        P. Les, T. Wayne, The NURBS book, Monographs in Visual Communication, Springer Series, 1997.
[17]        D. F. Rogers, 2000, An introduction to NURBS: with historical perspective, Elsevier,
[18]        H. Prautzsch, W. Boehm, M. Paluszny, 2002, Bézier and B-spline techniques, Springer,
[19]        E. Casartelli, L. Mangani, D. Roos Launchbury, A. Del Rio, Application of advanced RANS turbulence models for the prediction of turbomachinery flows, Journal of Turbomachinery, Vol. 144, No. 1, pp. 011008 %@ 0889-504X, 2022.
[20]        R. Balasubramanian, S. Barrows, J. Chen, Investigation of shear-stress transport turbulence model for turbomachinery applications, in Proceeding of, 566.
[21]        S. Rajendran, K. Purushothaman, Analysis of a centrifugal pump impeller using ANSYS-CFX, International Journal of Engineering Research & Technology, Vol. 1, No. 3, pp. 1-6, 2012.
[22]        F. R. Menter, R. Sechner, A. Matyushenko, Best Practice: RANS Turbulence Modeling in Ansys CFD, Ansys, Inc, 2021.
[23]        F. R. Menter, M. Kuntz, R. Langtry, Ten years of industrial experience with the SST turbulence model, Turbulence, heat and mass transfer, Vol. 4, No. 1, pp. 625-632, 2003.
[24]        G. Guo, R. Zhang, H. Yu, Evaluation of different turbulence models on simulation of gas-liquid transient flow in a liquid-ring vacuum pump, Vacuum, Vol. 180, pp. 109586 %@ 0042-207X, 2020.
[25]        M. Ennouri, H. Kanfoudi, A. Bel Hadj Taher, R. Zgolli, Numerical flow simulation and cavitation prediction in a centrifugal pump using an SST-SAS turbulence model, Journal of Applied Fluid Mechanics, Vol. 12, No. 1, pp. 25-39 %@ 1735-3572, 2019.
[26]        R. Lavimi, A. E. Benchikh Le Hocine, S. Poncet, R. Panneton, B. Marcos, Centrifugal blower optimization using gradient-free approaches and RANS simulation, in Proceeding of, 3313.
[27]        K. M. Almohammadi, D. B. Ingham, L. Ma, M. Pourkashan, Computational fluid dynamics (CFD) mesh independency techniques for a straight blade vertical axis wind turbine, Energy, Vol. 58, pp. 483-493 %@ 0360-5442, 2013.
[28]        I. Celik, O. Karatekin, Numerical experiments on application of Richardson extrapolation with nonuniform grids, 1997.
Volume 55, Issue 4
October 2024
Pages 698-710
  • Receive Date: 20 April 2024
  • Revise Date: 01 July 2024
  • Accept Date: 06 July 2024