[1] Helmholtz, XLIII. On discontinuous movements of fluids, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Vol. 36, No. 244, pp. 337-346, 1868.
[2] W. Thomson, XLVI. Hydrokinetic solutions and observations, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Vol. 42, No. 281, pp. 362-377, 1871.
[3] P. Drazin, Kelvin–Helmholtz instability of finite amplitude, Journal of Fluid Mechanics, Vol. 42, No. 2, pp. 321-335, 1970.
[4] S. Maslowe, R. Kelly, Finite-amplitude oscillations in a Kelvin-Helmholtz flow, International Journal of Non-Linear Mechanics, Vol. 5, No. 3, pp. 427-435, 1970.
[5] A. H. Nayfeh, W. S. Saric, Non-linear kelvin–helmholtz instability, Journal of Fluid Mechanics, Vol. 46, No. 2, pp. 209-231, 1971.
[6] M. Weissman, Nonlinear wave packets in the Kelvin-Helmholtz instability, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol. 290, No. 1377, pp. 639-681, 1979.
[7] D. D. Joseph, T. Y. Liao, Potential flows of viscous and viscoelastic fluids, Journal of Fluid Mechanics, Vol. 265, pp. 1-23, 1994.
[8] T. Funada, D. Joseph, Viscous potential flow analysis of Kelvin–Helmholtz instability in a channel, Journal of Fluid Mechanics, Vol. 445, pp. 263-283, 2001.
[9] M. K. Awasthi, G. Agrawal, Viscous potential flow analysis of Kelvin–Helmholtz instability of cylindrical interface, International Journal of Applied Mathematics and Computation, Vol. 3, No. 2, pp. 131-138, 2011.
[10] H. Kim, J. Padrino, D. Joseph, Viscous effects on Kelvin–Helmholtz instability in a channel, Journal of fluid mechanics, Vol. 680, pp. 398-416, 2011.
[11] G. M. Moatimid, Y. M. Mohamed, A novel methodology in analyzing nonlinear stability of two electrified viscoelastic liquids, Chinese Journal of Physics, Vol. 89, pp. 679-706, 2024.
[12] G. M. Moatimid, M. A. Mohamed, K. Elagamy, Nonlinear Kelvin-Helmholtz instability of a horizontal interface separating two electrified Walters' B liquids: A new approach, Chinese Journal of Physics, Vol. 85, pp. 629-648, 2023.
[13] G. M. Moatimid, M. H. Zekry, N. S. Gad, Nonlinear EHD instability of a cylindrical interface between two walters B'fluids in porous media, Journal of Porous Media, Vol. 25, No. 3, 2022.
[14] Z. Uddin, S. Harmand, S. Ahmed, Computational modeling of heat transfer in rotating heat pipes using nanofluids: A numerical study using PSO, International Journal of Thermal Sciences, Vol. 112, pp. 44-54, 2017.
[15] Z. Uddin, S. Harmand, Natural convection heat transfer of nanofluids along a vertical plate embedded in porous medium, Nanoscale research letters, Vol. 8, pp. 1-19, 2013.
[16] X.-Q. Wang, A. S. Mujumdar, A review on nanofluids-part II: experiments and applications, Brazilian Journal of Chemical Engineering, Vol. 25, pp. 631-648, 2008.
[17] X.-Q. Wang, A. S. Mujumdar, A review on nanofluids-part I: theoretical and numerical investigations, Brazilian journal of chemical engineering, Vol. 25, pp. 613-630, 2008.
[18] W. Yu, S. Choi, The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model, Journal of nanoparticle research, Vol. 5, pp. 167-171, 2003.
[19] Gaganpreet, S. Srivastava, Viscosity of nanofluids: particle shape and fractal aggregates, Physics and Chemistry of Liquids, Vol. 53, No. 2, pp. 174-186, 2015.
[20] G. M. Moatimid, M. A. Hassan, Convection instability of non-Newtonian Walter's nanofluid along a vertical layer, Journal of the Egyptian Mathematical Society, Vol. 25, No. 2, pp. 220-229, 2017.
[21] G. M. Moatimid, M. A. Hassan, Linear instability of water–oil electrohydrodynamic nanofluid layers: Analytical and numerical study, Journal of Computational and Theoretical Nanoscience, Vol. 15, No. 5, pp. 1495-1510, 2018.
[22] J. Ahuja, P. Girotra, Analytical and numerical investigation of Rayleigh–Taylor instability in nanofluids, Pramana, Vol. 95, pp. 1-12, 2021.
[23] M. K. Awasthi, Z. Uddin, R. Asthana, Temporal instability of a power-law viscoelastic nanofluid layer, The European Physical Journal Special Topics, Vol. 230, pp. 1427-1434, 2021.
[24] P. Girotra, J. Ahuja, D. Verma, Analysis of Rayleigh Taylor instability in nanofluids with rotation, Algebra Control Opt Numer, 2021.
[25] J. Ahuja, P. Girotra, RAYLEIGH-TAYLOR INSTABILITY IN NANOFLUIDS THROUGH POROUS MEDIUM, Journal of Porous Media, Vol. 24, No. 8, 2021.
[26] M. K. Awasthi, Dharamendra, D. Yadav, Temporal instability of nanofluid layer in a circular cylindrical cavity, The European Physical Journal Special Topics, Vol. 231, No. 13, pp. 2773-2779, 2022.
[27] G. M. Moatimid, M. A. Hassan, M. A. Mohamed, Temporal instability of a confined nano-liquid film with the Marangoni convection effect: Viscous potential theory, Microsystem Technologies, Vol. 26, pp. 2123-2136, 2020.
[28] Y. Han, KELVIN− HELMHOLTZ INSTABILITY OF A CONFINED NANO-LIQUID SHEET WITH THE EFFECTS OF HEAT ANDMASS TRANSFER ANDMARANGONI CONVECTION, Atomization and Sprays, Vol. 32, No. 1, 2022.
[29] M. K. Awasthi, A. Kumar, N. Dutt, Modeling Rayleigh-Taylor instability in nanofluid layers, in: Computational Fluid Flow and Heat Transfer, Eds., pp. 249-262: CRC Press, 2024.
[30] S. Agarwal, M. K. Awasthi, A. K. Shukla, Stability analysis of water-alumina nanofluid film at the spherical interface, Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, pp. 09544089221150733, 2023.
[31] G. Leonzio, E. Zondervan, Innovative application of statistical analysis for the optimization of CO2 absorption from flue gas with ionic liquid, in: Computer Aided Chemical Engineering, Eds., pp. 151-156: Elsevier, 2019.
[32] T. Mehmood, M. Ramzan, F. Howari, S. Kadry, Y.-M. Chu, Application of response surface methodology on the nanofluid flow over a rotating disk with autocatalytic chemical reaction and entropy generation optimization, Scientific Reports, Vol. 11, No. 1, pp. 4021, 2021/02/17, 2021.
[33] H. Upreti, Z. Uddin, A. K. Pandey, N. Joshi, Sensitivity analysis for Sisko nanofluid flow through stretching surface using response surface methodology, 2023.
[34] Z. Uddin, H. Hassan, S. Harmand, W. Ibrahim, Soft computing and statistical approach for sensitivity analysis of heat transfer through the hybrid nanoliquid film in rotating heat pipe, Scientific Reports, Vol. 12, No. 1, pp. 14983, 2022.
[35] O. A. Bég, D. S. Espinoza, A. Kadir, M. Shamshuddin, A. Sohail, Experimental study of improved rheology and lubricity of drilling fluids enhanced with nano-particles, Applied Nanoscience, Vol. 8, pp. 1069-1090, 2018.
[36] M. Shamshuddin, A. Saeed, S. Mishra, R. Katta, M. R. Eid, Homotopic simulation of MHD bioconvective flow of water-based hybrid nanofluid over a thermal convective exponential stretching surface, International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 34, No. 1, pp. 31-53, 2024.
[37] S. Salawu, E. Akinola, M. Shamshuddin, Entropy generation and current density of tangent hyperbolic Cu-C2H6O2 and ZrO2-Cu/C2H6O2 hybridized electromagnetic nanofluid: a thermal power application, South African Journal of Chemical Engineering, Vol. 46, pp. 1-11, 2023.