[1] F. Yang, A. C. M. Chong, D. C. C. Lam, P. Tong, Couple stress based strain gradient theory for elasticity, International Journal of Solids and Structures, Vol. 39, pp. 2731-2743, 05/01, 2002.
[2] E. C. Aifantis, Strain gradient interpretation of size effects, International Journal of Fracture, Vol. 95, No. 1, pp. 299-314, 1999/01/01, 1999.
[3] H. Moosavi, M. Mohammadi, A. Farajpour, S. Shahidi, Vibration analysis of nanorings using nonlocal continuum mechanics and shear deformable ring theory, Physica E: Low-dimensional Systems and Nanostructures, Vol. 44, No. 1, pp. 135-140, 2011.
[4] M. Khorasani, Z. Soleimani Javid, E. Arshid, L. Lampani, Ö. Civalek, Thermo-elastic buckling of honeycomb micro plates integrated with FG-GNPs reinforced Epoxy skins with stretching effect, Composite Structures, Vol. 258, pp. 113430, 02/01, 2021.
[5] B. Akgöz, Ö. Civalek, Buckling Analysis of Functionally Graded Tapered Microbeams via Rayleigh–Ritz Method, Mathematics, Vol. 10, pp. 4429, 11/24, 2022.
[6] B. Akgöz, Ö. Civalek, Application of strain gradient elasticity theory for buckling analysis of protein microtubules, Current Applied Physics, Vol. 11, No. 5, pp. 1133-1138, 2011.
[7] P. Lu, L. He, H. Lee, C. Lu, Thin plate theory including surface effects, International Journal of Solids and Structures - INT J SOLIDS STRUCT, Vol. 43, pp. 4631-4647, 08/01, 2006.
[8] M. Sobhy, A comprehensive study on FGM nanoplates embedded in an elastic medium, Composite Structures, Vol. 134, 09/01, 2015.
[9] M. Sobhy, A. Radwan, A New Quasi 3D Nonlocal Plate Theory for Vibration and Buckling of FGM Nanoplates, International Journal of Applied Mechanics, Vol. 09, pp. 1750008, 02/08, 2017.
[10] A. Zenkour, A novel mixed nonlocal elasticity theory for thermoelastic vibration of nanoplates, Composite Structures, Vol. 185, 11/01, 2017.
[11] A. Abdelrahman, M. A. Eltaher, On bending and buckling responses of perforated nanobeams including surface energy for different beams theories, Engineering with Computers, Vol. 38, pp. 1-27, 06/01, 2022.
[12] Q.-H. Pham, T. T. Tran, V. K. Tran, P.-C. Nguyen, T. Nguyen-Thoi, A. M. Zenkour, Bending and hygro-thermo-mechanical vibration analysis of a functionally graded porous sandwich nanoshell resting on elastic foundation, Mechanics of Advanced Materials and Structures, Vol. 29, No. 27, pp. 5885-5905, 2022.
[13] A. Garg, H. D. Chalak, A. Zenkour, M.-O. Belarbi, M. S. A. Houari, A Review of Available Theories and Methodologies for the Analysis of Nano Isotropic, Nano Functionally Graded, and CNT Reinforced Nanocomposite Structures, Archives of Computational Methods in Engineering, 10/04, 2021.
[14] P. Phung-Van, C. H. Thai, A novel size-dependent nonlocal strain gradient isogeometric model for functionally graded carbon nanotube-reinforced composite nanoplates, Engineering with Computers, pp. 1-14, 2021.
[15] A. Zenkour, R. Alghanmi, A refined quasi-3D theory for the bending of functionally graded porous sandwich plates resting on elastic foundations, Thin-Walled Structures, Vol. 181, pp. 110047, 12/01, 2022.
[16] M. Arefi, S. Firouzeh, E. Mohammad-Rezaei Bidgoli, Ö. Civalek, Analysis of Porous Micro-plates Reinforced with FG-GNPs Based on Reddy plate Theory, Composite Structures, Vol. 247, pp. 112391, 04/01, 2020.
[17] A. Garg, H. D. Chalak, A. Zenkour, M.-O. Belarbi, R. Sahoo, Bending and free vibration analysis of symmetric and unsymmetric functionally graded CNT reinforced sandwich beams containing softcore, Thin-Walled Structures, Vol. 170, pp. 108626, 01/01, 2022.
[18] İ. Esen, A. Abdelrahman, M. A. Eltaher, Free vibration and buckling stability of FG nanobeams exposed to magnetic and thermal fields, Engineering with Computers, Vol. 38, 08/01, 2022.
[19] L. Hoa, P. Vinh, N. Duc, T. Nguyen-Thoi, L. Son, D. Thom, Bending and free vibration analyses of functionally graded material nanoplates via a novel nonlocal single variable shear deformation plate theory, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 235, pp. 095440622096452, 10/15, 2020.
[20] Ş. Akbaş, Modal analysis of viscoelastic nanorods under an axially harmonic load, Advances in nano research, Vol. 8, pp. 277-282, 05/27, 2020.
[21] E. E. Ghandourh, A. M. Abdraboh, Dynamic analysis of functionally graded nonlocal nanobeam with different porosity models, Steel and Composite Structures, An International Journal, Vol. 36, No. 3, pp. 293-305, 2020.
[22] S. Natarajan, S. Chakraborty, M. Thangavel, S. Bordas, T. Rabczuk, Size-dependent free flexural vibration behavior of functionally graded nanoplates, Computational Materials Science, Vol. 65, pp. 74-80, 2012.
[23] M. Koizumi, FGM activities in Japan, Composites Part B: Engineering, Vol. 28, No. 1, pp. 1-4, 1997/01/01/, 1997.
[24] H.-T. Thai, T. P. Vo, A nonlocal sinusoidal shear deformation beam theory with application to bending, buckling, and vibration of nanobeams, International Journal of Engineering Science, Vol. 54, pp. 58-66, 2012.
[25] F. Ebrahimi, M. Barati, A. Zenkour, Vibration Analysis of Smart Embedded Shear Deformable Nonhomogeneous Piezoelectric Nanoscale Beams based on Nonlocal Elasticity Theory, International Journal of Aeronautical and Space Sciences, Vol. 18, pp. 255-269, 06/01, 2017.
[26] A. Shariati, D. w. Jung, H. Mohammad-Sedighi, K. K. Żur, M. Habibi, M. Safa, On the Vibrations and Stability of Moving Viscoelastic Axially Functionally Graded Nanobeams, Materials, Vol. 13, No. 7, pp. 1707, 2020.
[27] J. Reddy, Nonlocal theories for bending, buckling and vibration of beams, International Journal of Engineering Science, Vol. 45, pp. 288-307, 02/01, 2007.
[28] J. Reddy, S. Pang, Nonlocal continuum theories of beams for the analysis of carbon nanotubes, Journal of Applied Physics, Vol. 103, pp. 023511-023511, 02/01, 2008.
[29] M. A. Eltaher, S. Emam, F. Ibrahim, Free vibration analysis of functionally graded size-dependent nanobeams, Applied Mathematics and Computation, Vol. 218, pp. 7406-7420, 03/01, 2012.
[30] R. Nazemnezhad, S. Hosseini-Hashemi, Nonlocal nonlinear free vibration of functionally graded nanobeams, Composite Structures, Vol. 110, pp. 192-199, 04/01, 2014.
[31] F. Ebrahimi, M. Barati, Ö. Civalek, Application of Chebyshev–Ritz method for static stability and vibration analysis of nonlocal microstructure-dependent nanostructures, Engineering with Computers, Vol. 36, 07/01, 2020.
[32] L. Hadji, M. Avcar, Nonlocal free vibration analysis of porous FG nanobeams using hyperbolic shear deformation beam theory, Advances in Nano Research, Vol. 10, pp. 281-293, 03/16, 2021.
[33] Y. Gafour, A. Hamidi, A. Benahmed, M. Zidour, T. Bensattalah, Porosity-dependent free vibration analysis of FG nanobeam using non-local shear deformation and energy principle, Advances in nano research, Vol. 8, No. 1, pp. 37-47, 2020.
[34] A. C. Eringen, Theory of micropolar plates, Zeitschrift für angewandte Mathematik und Physik ZAMP, Vol. 18, pp. 12-30, 1967.
[35] A. C. Eringen, Nonlocal polar elastic continua, International journal of engineering science, Vol. 10, No. 1, pp. 1-16, 1972.
[36] A. C. Eringen, D. Edelen, On nonlocal elasticity, International journal of engineering science, Vol. 10, No. 3, pp. 233-248, 1972.
[37] A. C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, Journal of applied physics, Vol. 54, No. 9, pp. 4703-4710, 1983.
[38] B. Farshi, A. Assadi, A. Alinia-ziazi, Frequency analysis of nanotubes with consideration of surface effects, Applied Physics Letters, Vol. 96, pp. 093105-093105, 03/02, 2010.
[39] R. Billel, Contribution to study the effect of (Reuss, LRVE, Tamura) models on the axial and shear stress of sandwich FGM plate (Ti–6A1–4V/ZrO2) subjected on linear and nonlinear thermal loads, AIMS Materials Science, Vol. 10, No. 1, pp. 26-39, 2023.
[40] B. Rebai, K. Mansouri, M. Chitour, A. Berkia, T. Messas, F. Khadraoui, B. Litouche, Effect of idealization models on deflection of functionally graded material (FGM) plate, Journal of Nano-and Electronic Physics, Vol. 15, No. 1, 2023.
[41] W. Voigt, Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper, Annalen der physik, Vol. 274, No. 12, pp. 573-587, 1889.
[42] A. Reuß, Berechnung der fließgrenze von mischkristallen auf grund der plastizitätsbedingung für einkristalle, ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, Vol. 9, No. 1, pp. 49-58, 1929.
[43] M. M. Gasik, R. R. Lilius, Evaluation of properties of W Cu functional gradient materials by micromechanical model, Computational materials science, Vol. 3, No. 1, pp. 41-49, 1994.
[44] J. R. Zuiker, Functionally graded materials: choice of micromechanics model and limitations in property variation, Composites Engineering, Vol. 5, No. 7, pp. 807-819, 1995.
[45] I. Tamura, Strength and ductility of Fe-Ni-C alloys composed of austenite and martensite with various strength, in Proceeding of, Cambridge, Institute of Metals, pp. 611-615.
[46] T. Mori, K. Tanaka, Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta metallurgica, Vol. 21, No. 5, pp. 571-574, 1973.