Comparative in silico analysis of CHIR99021, Azakenpaullone and Tricantin interactions with GSK3β, a key protein in stem cell fates

Document Type : Research Paper

Authors

1 Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran

2 Laboratory of Regenerative Medicine and Biomedical Innovation, National Cell Bank, Pasteur Institute of Iran, Tehran, Iran

3 Department of Nanobiotechnology, Pasteur Institute of Iran, Tehran, Iran

4 St Vincent's Hospital, Sydney, Australia

5 Department of Bioscience, University of Milan, Milan, Italy

Abstract

Glycogen Synthase Kinase 3β (GSK3β) is a multifunctional serine/threonine-protein kinase that serves as a pivotal regulator of various human pluripotent stem cell (hPSCs) functions, including self-renewal, adhesion, survival, and differentiation in addition to have an effect on motility of sperm. Despite advancement in understanding the critical roles of GSK3β inhibition in various stem cell functions, the exact molecular basis of its inactivation using various small-molecule inhibitors remains poorly understood. Investigating the mechanistic details of the actions of inhibitors targeting GSK3 proteins, such as CHIR99021, Azakenpaullone, and Tricantin, could be extremely beneficial for improving novel defined stem cell culture systems and cancer research. The present study aimed to predict the binding mode of the aforementioned ligands with GSK3β, by molecular docking and metadynamic simulation, and compare the three-dimensional structure of the inactive conformation of GSK3β in the presence of three inhibitors. Also, the pharmacokinetic or ADMET properties of ligands, such as Lipinski's rule of five violations for drug-likeness, QPlog S, QPlog K, and bioactivity scoring, were predicted. The analysis of protein stability revealed that in the absence of inhibitors, the GSK3β has higher flexibility, while in the presence of CHIR and AZA, the rate of flexibility of most protein regions, especially the envelope area, decreased. It was found that though all small molecules are capable of facilitating the inhibition of GSK3β protein, but the flexibility of protein is a bit higher for CHIR than those for other two ligands.

Keywords

Main Subjects

[1]          A. Krishnankutty, T. Kimura, T. Saito, K. Aoyagi, A. Asada, S. I. Takahashi, K. Ando, M. Ohara-Imaizumi, K. Ishiguro, S. I. Hisanaga, In vivo regulation of glycogen synthase kinase 3β activity in neurons and brains, Sci Rep, Vol. 7, No. 1, pp. 8602, Aug 17, 2017. eng
[2]          C. Racaud-Sultan, N. Vergnolle, GSK3β, a Master Kinase in the Regulation of Adult Stem Cell Behavior, Cells, Vol. 10, No. 2, Jan 24, 2021. eng
[3]          P. Patel, J. R. Woodgett, Glycogen Synthase Kinase 3: A Kinase for All Pathways?, Curr Top Dev Biol, Vol. 123, pp. 277-302, 2017. eng
[4]          S. M. Law, J. J. Zheng, Premise and peril of Wnt signaling activation through GSK-3β inhibition, Iscience, Vol. 25, No. 4, 2022.
[5]          T. Sogo, S. Nakao, T. Tsukamoto, T. Ueyama, Y. Harada, D. Ihara, T. Ishida, M. Nakahara, K. Hasegawa, Y. Akagi, Canonical Wnt signaling activation by chimeric antigen receptors for efficient cardiac differentiation from mouse embryonic stem cells, Inflammation and Regeneration, Vol. 43, No. 1, pp. 11, 2023.
[6]          X. Hou, S. Ma, W. Fan, F. Li, M. Xu, C. Yang, F. Liu, Y. Yan, J. Wan, F. Lan, Chemically defined and small molecules-based generation of sinoatrial node-like cells, Stem Cell Research & Therapy, Vol. 13, No. 1, pp. 158, 2022.
[7]          M. H. Kagey, X. He, Rationale for targeting the Wnt signalling modulator Dickkopf‐1 for oncology, British journal of pharmacology, Vol. 174, No. 24, pp. 4637-4650, 2017.
[8]          K. Liu, C. Yu, M. Xie, K. Li, S. J. C. c. b. Ding, Chemical modulation of cell fate in stem cell therapeutics and regenerative medicine, Vol. 23, No. 8, pp. 893-916, 2016.
[9]          C. Racaud-Sultan, N. Vergnolle, GSK3β, a master kinase in the regulation of adult stem cell behavior, Cells, Vol. 10, No. 2, pp. 225, 2021.
[10]        F. Laco, A. T.-L. Lam, T.-L. Woo, G. Tong, V. Ho, P.-L. Soong, E. Grishina, K.-H. Lin, S. Reuveny, S. K.-W. J. S. c. r. Oh, therapy, Selection of human induced pluripotent stem cells lines optimization of cardiomyocytes differentiation in an integrated suspension microcarrier bioreactor, Vol. 11, No. 1, pp. 1-16, 2020.
[11]        X. X. Qiu, Y. Liu, Y. F. Zhang, Y. N. Guan, Q. Q. Jia, C. Wang, H. Liang, Y. Q. Li, H. T. Yang, Y. W. J. J. o. t. A. H. A. Qin, Rapamycin and CHIR 99021 Coordinate Robust Cardiomyocyte Differentiation From Human Pluripotent Stem Cells Via Reducing p53‐Dependent Apoptosis, Vol. 6, No. 10, pp. e005295, 2017.
[12]        J. Huang, X. Guo, W. Li, H. J. S. r. Zhang, Activation of Wnt/β-catenin signalling via GSK3 inhibitors direct differentiation of human adipose stem cells into functional hepatocytes, Vol. 7, No. 1, pp. 1-12, 2017.
[13]        H. Wang, J. Hao, C. C. J. A. c. b. Hong, Cardiac induction of embryonic stem cells by a small molecule inhibitor of Wnt/β-catenin signaling, Vol. 6, No. 2, pp. 192-197, 2011.
[14]        J. L. Stamos, W. I. Weis, The β-catenin destruction complex, Cold Spring Harbor perspectives in biology, Vol. 5, No. 1, pp. a007898, 2013.
[15]        G. G. Tortelote, R. R. Reis, F. de Almeida Mendes, J. G. J. C. s. Abreu, Complexity of the Wnt/β‑catenin pathway: Searching for an activation model, Vol. 40, pp. 30-43, 2017.
[16]        A. Kadari, S. Mekala, N. Wagner, D. Malan, J. Köth, K. Doll, L. Stappert, D. Eckert, M. Peitz, J. J. S. c. r. Matthes, reports, Robust generation of cardiomyocytes from human iPS cells requires precise modulation of BMP and WNT signaling, Vol. 11, No. 4, pp. 560-569, 2015.
[17]        C. H. Bennett, Efficient estimation of free energy differences from Monte Carlo data, Journal of Computational Physics, Vol. 22, No. 2, pp. 245-268, 1976.
[18]        H. Berendsen, Report of CECAM Workshop: models for protein dynamics, Orsay, May, Vol. 24, 1976.
[19]        A. Kordzadeh, A. R. Saadatabadi, A. Hadi, Investigation on penetration of saffron components through lipid bilayer bound to spike protein of SARS-CoV-2 using steered molecular dynamics simulation, Heliyon, Vol. 6, No. 12, 2020.
[20]        A. Hadi, A. Rastgoo, A. Bolhassani, N. Haghighipour, Effects of stretching on molecular transfer from cell membrane by forming pores, Soft Materials, Vol. 17, No. 4, pp. 391-399, 2019.
[21]        V. Eskandari, A. Kordzadeh, L. Zeinalizad, H. Sahbafar, H. Aghanouri, A. Hadi, S. Ghaderi, Detection of molecular vibrations of atrazine by accumulation of silver nanoparticles on flexible glass fiber as a surface-enhanced Raman plasmonic nanosensor, Optical Materials, Vol. 128, pp. 112310, 2022.
[22]        K. Bowers, E. Chow, H. Xu, R. Dror, M. Eastwood, B. A. Gregersen, J. Klepeis, I. Kolossvary, M. Moraes, F. Sacerdoti, Proceedings of the ACM/IEEE Conference on Supercomputing (SC06), Tampa, Florida, November, pp. 11-17, 2006.
[23]        G. R. Bowman, V. A. Voelz, V. S. Pande, Atomistic folding simulations of the five-helix bundle protein λ6− 85, Journal of the American Chemical Society, Vol. 133, No. 4, pp. 664-667, 2011.
[24]        S. E. Boyce, D. L. Mobley, G. J. Rocklin, A. P. Graves, K. A. Dill, B. K. Shoichet, Predicting ligand binding affinity with alchemical free energy methods in a polar model binding site, Journal of molecular biology, Vol. 394, No. 4, pp. 747-763, 2009.
[25]        J. Simons, Why Is Quantum Chemistry So Complicated?, Journal of the American Chemical Society, Vol. 145, No. 8, pp. 4343-4354, 2023.
[26]        D. A. Case, T. E. Cheatham III, T. Darden, H. Gohlke, R. Luo, K. M. Merz Jr, A. Onufriev, C. Simmerling, B. Wang, R. J. Woods, The Amber biomolecular simulation programs, Journal of computational chemistry, Vol. 26, No. 16, pp. 1668-1688, 2005.
[27]        L. T. Chong, Y. Duan, L. Wang, I. Massova, P. A. Kollman, Molecular dynamics and free-energy calculations applied to affinity maturation in antibody 48G7, Proceedings of the National Academy of Sciences, Vol. 96, No. 25, pp. 14330-14335, 1999.
[28]        M. Christen, P. H. Hünenberger, D. Bakowies, R. Baron, R. Bürgi, D. P. Geerke, T. N. Heinz, M. A. Kastenholz, V. Kräutler, C. Oostenbrink, The GROMOS software for biomolecular simulation: GROMOS05, Journal of computational chemistry, Vol. 26, No. 16, pp. 1719-1751, 2005.
[29]        Y. Duan, P. A. Kollman, Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution, Science, Vol. 282, No. 5389, pp. 740-744, 1998.
[30]        U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, L. G. Pedersen, A smooth particle mesh Ewald method, The Journal of chemical physics, Vol. 103, No. 19, pp. 8577-8593, 1995.
[31]        M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess, E. Lindahl, GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers, SoftwareX, Vol. 1, pp. 19-25, 2015.
[32]        Maestro, version 10.2, Schrӧdinger, LLC, New York, NY, 2015-2
[33]        A. W. Sousa da Silva, W. F. Vranken, ACPYPE - AnteChamber PYthon Parser interfacE, BMC Res Notes, Vol. 5, pp. 367, Jul 23, 2012. eng
[34]        A. W. S. Da Silva, W. F. Vranken, ACPYPE-Antechamber python parser interface, BMC research notes, Vol. 5, No. 1, pp. 1-8, 2012.
[35]        N. Guex, M. C. Peitsch, T. Schwede, Automated comparative protein structure modeling with SWISS‐MODEL and Swiss‐PdbViewer: A historical perspective, Electrophoresis, Vol. 30, No. S1, pp. S162-S173, 2009.
[36]        H. Kobayashi, H. Nishimura, N. Kudo, H. Osada, M. Yoshida, A novel GSK3 inhibitor that promotes self-renewal in mouse embryonic stem cells, Bioscience, Biotechnology, and Biochemistry, Vol. 84, No. 10, pp. 2113-2120, 2020.
[37]        A. Joshi, R. Kumar, A. Sharma, Molecular docking studies, bioactivity score prediction, drug likeness analysis of GSK-3 β inhibitors: A target protein involved in Alzheimer’s disease, Biosciences Biotechnology Research Asia, Vol. 15, No. 2, pp. 455-467, 2018.
[38]        C. Shivanika, D. Kumar, V. Ragunathan, P. Tiwari, A. Sumitha, Molecular docking, validation, dynamics simulations, and pharmacokinetic prediction of natural compounds against the SARS-CoV-2 main-protease, Journal of biomolecular structure & dynamics, pp. 1, 2020.
[39]        G. M. Morris, R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew, D. S. Goodsell, A. J. Olson, AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility, Journal of computational chemistry, Vol. 30, No. 16, pp. 2785-2791, 2009. eng
[40]        H. A. Odhar, S. W. Ahjel, A. A. M. A. Albeer, A. F. Hashim, A. M. Rayshan, S. S. Humadi, Molecular docking and dynamics simulation of FDA approved drugs with the main protease from 2019 novel coronavirus, Bioinformation, Vol. 16, No. 3, pp. 236, 2020.
[41]        Tom D, Darrin Y, Lee P, Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems, The Journal of Chemical Physics, Vol. 98, pp. 10089-10092, 1993.
[42]        G. Bocci, E. Carosati, P. Vayer, A. Arrault, S. Lozano, G. J. S. r. Cruciani, ADME-Space: a new tool for medicinal chemists to explore ADME properties, Vol. 7, No. 1, pp. 1-13, 2017.
[43]        M. P. Doogue, T. M. Polasek, The ABCD of clinical pharmacokinetics, Sage Publications Sage UK: London, England, 2013.
[44]        QikProp, version 4.4, Schrӧdinger, LLC, New York, NY, Release 2015-2
[45]        C. A. Lipinski, F. Lombardo, B. W. Dominy, P. J. J. A. d. d. r. Feeney, Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings, Vol. 23, No. 1-3, pp. 3-25, 1997.
Volume 55, Issue 3
July 2024
Pages 401-422
  • Receive Date: 07 September 2023
  • Revise Date: 08 October 2023
  • Accept Date: 17 October 2023