[1] M. Gu, X. Cai, Q. Fu, H. Li, X. Wang, B. Mao, Numerical analysis of passive piles under surcharge load in extensively deep soft soil, Buildings, Vol. 12, No. 11, pp. 1988, 2022.
[2] X. Gong, L. Wang, Y. Mou, H. Wang, X. Wei, W. Zheng, L. Yin, Improved four-channel PBTDPA control strategy using force feedback bilateral teleoperation system, International Journal of Control, Automation and Systems, Vol. 20, No. 3, pp. 1002-1017, 2022.
[3] M. A. Al-Osta, Wave propagation investigation of a porous sandwich FG plate under hygrothermal environments via a new first-order shear deformation theory, Steel and Composite Structures, Vol. 43, No. 1, pp. 117, 2022.
[4] P. Wan, M. Al-Furjan, R. Kolahchi, L. Shan, Application of DQHFEM for free and forced vibration, energy absorption, and post-buckling analysis of a hybrid nanocomposite viscoelastic rhombic plate assuming CNTs’ waviness and agglomeration, Mechanical Systems and Signal Processing, Vol. 189, pp. 110064, 2023.
[5] A. Hajlaoui, E. Chebbi, F. Dammak, Three-dimensional thermal buckling analysis of functionally graded material structures using a modified FSDT-based solid-shell element, International Journal of Pressure Vessels and Piping, Vol. 194, pp. 104547, 2021.
[6] M. Mohammadi, M. Safarabadi, A. Rastgoo, A. Farajpour, Hygro-mechanical vibration analysis of a rotating viscoelastic nanobeam embedded in a visco-Pasternak elastic medium and in a nonlinear thermal environment, Acta Mechanica, Vol. 227, pp. 2207-2232, 2016.
[7] J. Mantari, E. Granados, A refined FSDT for the static analysis of functionally graded sandwich plates, Thin-Walled Structures, Vol. 90, pp. 150-158, 2015.
[8] M. Sobhy, Buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions, Composite Structures, Vol. 99, pp. 76-87, 2013.
[9] V.-H. Nguyen, T.-K. Nguyen, H.-T. Thai, T. P. Vo, A new inverse trigonometric shear deformation theory for isotropic and functionally graded sandwich plates, Composites Part B: Engineering, Vol. 66, pp. 233-246, 2014.
[10] M. Al-Furjan, S. Fan, L. Shan, A. Farrokhian, X. Shen, R. Kolahchi, Wave propagation analysis of micro air vehicle wings with honeycomb core covered by porous FGM and nanocomposite magnetostrictive layers, Waves in Random and Complex Media, pp. 1-30, 2023.
[11] L. Shan, C. Tan, X. Shen, S. Ramesh, M. Zarei, R. Kolahchi, M. Hajmohammad, The effects of nano-additives on the mechanical, impact, vibration, and buckling/post-buckling properties of composites: A review, Journal of Materials Research and Technology, 2023.
[12] M. Chitour, A. Bouhadra, F. Bourada, B. Mamen, A. A. Bousahla, A. Tounsi, A. Tounsi, M. A. Salem, K. M. Khedher, Stability analysis of imperfect FG sandwich plates containing metallic foam cores under various boundary conditions, in Proceeding of, Elsevier, pp. 106021.
[13] M. Mohammadi, M. Hosseini, M. Shishesaz, A. Hadi, A. Rastgoo, Primary and secondary resonance analysis of porous functionally graded nanobeam resting on a nonlinear foundation subjected to mechanical and electrical loads, European Journal of Mechanics-A/Solids, Vol. 77, pp. 103793, 2019.
[14] Y. Belkhodja, M. E. A. Belkhodja, H. Fekirini, D. Ouinas, New quasi-three-, and two-dimensional trigonometric-cubic monomial HSDT for thermal buckling and thermo-mechanical bending analyses of FGM symmetrical/non-symmetrical sandwich plates with hard/soft core, Composite Structures, Vol. 304, pp. 116402, 2023.
[15] C. Chu, L. Shan, M. Al-Furjan, A. Farrokhian, R. Kolahchi, Energy absorption, free and forced vibrations of flexoelectric nanocomposite magnetostrictive sandwich nanoplates with single sinusoidal edge on the frictional torsional viscoelastic medium, Archives of Civil and Mechanical Engineering, Vol. 23, No. 4, pp. 223, 2023.
[16] B. Sahoo, N. Sharma, B. Sahoo, P. M. Ramteke, S. K. Panda, S. Mahmoud, Nonlinear vibration analysis of FGM sandwich structure under thermal loadings, in Proceeding of, Elsevier, pp. 1392-1402.
[17] M. Khayat, A. Baghlani, M. A. Najafgholipour, A hybrid algorithm for modeling and studying of the effect of material and mechanical uncertainties on stability of sandwich FGM materials under thermal shock, Composite Structures, Vol. 293, pp. 115657, 2022.
[18] S. Natarajan, G. Manickam, Bending and vibration of functionally graded material sandwich plates using an accurate theory, Finite Elements in Analysis and Design, Vol. 57, pp. 32-42, 2012.
[19] C. Chu, M. Al-Furjan, R. Kolahchi, Energy harvesting and dynamic response of SMA nano conical panels with nanocomposite piezoelectric patch under moving load, Engineering Structures, Vol. 292, pp. 116538, 2023.
[20] S. Akavci, Mechanical behavior of functionally graded sandwich plates on elastic foundation, Composites Part B: Engineering, Vol. 96, pp. 136-152, 2016.
[21] S. Pandey, S. Pradyumna, Free vibration of functionally graded sandwich plates in thermal environment using a layerwise theory, European Journal of Mechanics-A/Solids, Vol. 51, pp. 55-66, 2015.
[22] P. Wan, M. Al-Furjan, R. Kolahchi, Nonlinear flutter response and reliability of supersonic smart hybrid nanocomposite rupture trapezoidal plates subjected to yawed flow using DQHFEM, Aerospace Science and Technology, Vol. 145, pp. 108862, 2024.
[23] A. Tamrabet, B. Mamen, A. Menasria, A. Bouhadra, A. Tounsi, M. H. Ghazwani, A. Alnujaie, S. Mahmoud, Buckling behaviors of FG porous sandwich plates with metallic foam cores resting on elastic foundation, Structural Engineering and Mechanics, An Int'l Journal, Vol. 85, No. 3, pp. 289-304, 2023.
[24] A. A. Daikh, A. M. Zenkour, Effect of porosity on the bending analysis of various functionally graded sandwich plates, Materials Research Express, Vol. 6, No. 6, pp. 065703, 2019.
[25] D. Shahsavari, M. Shahsavari, L. Li, B. Karami, A novel quasi-3D hyperbolic theory for free vibration of FG plates with porosities resting on Winkler/Pasternak/Kerr foundation, Aerospace Science and Technology, Vol. 72, pp. 134-149, 2018.
[26] N. Wattanasakulpong, V. Ungbhakorn, Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities, Aerospace Science and Technology, Vol. 32, No. 1, pp. 111-120, 2014/01/01/, 2014.
[27] A. Attia, A. A. Bousahla, A. Tounsi, S. R. Mahmoud, A. S. Alwabli, A refined four variable plate theory for thermoelastic analysis of FGM plates resting on variable elastic foundations, Structural engineering and mechanics: An international journal, Vol. 65, No. 4, pp. 453-464, 2018.
[28] M. Sobhy, Thermoelastic response of FGM plates with temperature-dependent properties resting on variable elastic foundations, International Journal of Applied Mechanics, Vol. 7, No. 06, pp. 1550082, 2015.
[29] S. Pradhan, T. Murmu, Thermo-mechanical vibration of FGM sandwich beam under variable elastic foundations using differential quadrature method, Journal of Sound and Vibration, Vol. 321, No. 1-2, pp. 342-362, 2009.
[30] S. Refrafi, A. A. Bousahla, A. Bouhadra, A. Menasria, F. Bourada, A. Tounsi, E. A. Bedia, S. Mahmoud, K. H. Benrahou, A. Tounsi, Effects of hygro-thermo-mechanical conditions on the buckling of FG sandwich plates resting on elastic foundations, Computers and Concrete, an International Journal, Vol. 25, No. 4, pp. 311-325, 2020.
[31] A. Tounsi, A. Bouhadra, A. A. Bousahla, S. Mahmoud, A new and simple HSDT for thermal stability analysis of FG sandwich plates, Steel and Composite Structures, An International Journal, Vol. 25, No. 2, pp. 157-175, 2017.
[32] F. Bourada, K. Amara, A. Tounsi, Buckling analysis of isotropic and orthotropic plates using a novel four variable refined plate theory, 2016.
[33] S. Merdaci, A. Tounsi, A. Bakora, A novel four variable refined plate theory for laminated composite plates, Steel Compos. Struct, Vol. 22, No. 4, pp. 713-732, 2016.
[34] N. Himeur, B. Mamen, S. Benguediab, A. Bouhadra, A. Menasria, B. Bouchouicha, F. Bourada, M. Benguediab, Coupled effect of variable Winkler–Pasternak foundations on bending behavior of FG plates exposed to several types of loading, Steel and Composite Structures, An International Journal, Vol. 44, No. 3, pp. 353-369, 2022.
[35] N. Zouatnia, L. Hadji, Effect of the micromechanical models on the bending of FGM beam using a new hyperbolic shear deformation theory, Earthquakes and Structures, Vol. 16, No. 2, pp. 177-183, 2019.
[36] A. F. Radwan, Effects of non-linear hygrothermal conditions on the buckling of FG sandwich plates resting on elastic foundations using a hyperbolic shear deformation theory, Journal of Sandwich Structures & Materials, Vol. 21, No. 1, pp. 289-319, 2019.
[37] A. Safa, L. Hadji, M. Bourada, N. Zouatnia, Thermal vibration analysis of FGM beams using an efficient shear deformation beam theory, Earthq. Struct, Vol. 17, No. 3, pp. 329-336, 2019.
[38] Ş. D. Akbaş, Vibration and static analysis of functionally graded porous plates, Journal of Applied and Computational Mechanics, Vol. 3, No. 3, pp. 199-207, 2017.
[39] M. Bourada, A. Tounsi, M. S. A. Houari, E. A. A. Bedia, A new four-variable refined plate theory for thermal buckling analysis of functionally graded sandwich plates, Journal of Sandwich Structures & Materials, Vol. 14, No. 1, pp. 5-33, 2012.
[40] M. Sekkal, B. Fahsi, A. Tounsi, S. Mahmoud, A new quasi-3D HSDT for buckling and vibration of FG plate, Structural Engineering and Mechanics, An Int'l Journal, Vol. 64, No. 6, pp. 737-749, 2017.
[41] H.-T. Thai, D.-H. Choi, An efficient and simple refined theory for buckling analysis of functionally graded plates, Applied Mathematical Modelling, Vol. 36, No. 3, pp. 1008-1022, 2012/03/01/, 2012.