[1] R. V. Williamson, The flow of pseudoplastic materials, Industrial & Engineering Chemistry, Vol. 21, No. 11, pp. 1108-1111, 1929.
[2] S. Bilal, K. U. Rehman, M. Malik, Numerical investigation of thermally stratified Williamson fluid flow over a cylindrical surface via Keller box method, Results in physics, Vol. 7, pp. 690-696, 2017.
[3] W. Ibrahim, M. Negera, Viscous dissipation effect on mixed convective heat transfer of MHD flow of Williamson nanofluid over a stretching cylinder in the presence of variable thermal conductivity and chemical reaction, Heat Transfer, Vol. 50, No. 3, pp. 2427-2453, 2021.
[4] F. A. Alwawi, F. M. Al Faqih, M. Z. Swalmeh, M. A. H. Ibrahim, Combined convective energy transmission performance of Williamson hybrid nanofluid over a cylindrical shape with magnetic and radiation impressions, Mathematics, Vol. 10, No. 17, pp. 3191, 2022.
[5] K. B. S. Latha, M. G. Reddy, D. Tripathi, O. A. Bég, S. Kuharat, H. Ahmad, D. U. Ozsahin, S. Askar, Computation of stagnation coating flow of electro-conductive ternary Williamson hybrid GO-AU-Co 3 O 4/EO nanofluid with a Cattaneo–Christov heat flux model and magnetic induction, Scientific Reports, Vol. 13, No. 1, pp. 10972, 2023.
[6] M. Z. Swalmeh, F. A. Alwawi, M. S. Kausar, M. A. H. Ibrahim, A. S. Hamarsheh, I. M. Sulaiman, A. M. Awwal, N. Pakkaranang, B. Panyanak, Numerical simulation on energy transfer enhancement of a Williamson ferrofluid subjected to thermal radiation and a magnetic field using hybrid ultrafine particles, Scientific Reports, Vol. 13, No. 1, pp. 3176, 2023.
[7] O. A. S. Alzu’bi, F. A. Alwawi, M. Z. Swalmeh, I. M. Sulaiman, A. S. Hamarsheh, M. A. H. Ibrahim, Energy transfer through a magnetized williamson hybrid nanofluid flowing around a spherical surface: Numerical simulation, Mathematics, Vol. 10, No. 20, pp. 3823, 2022.
[8] H. Adun, D. Kavaz, M. Dagbasi, Review of ternary hybrid nanofluid: Synthesis, stability, thermophysical properties, heat transfer applications, and environmental effects, Journal of Cleaner Production, Vol. 328, pp. 129525, 2021.
[9] R. Rekha Sahoo, Effect of various shape and nanoparticle concentration based ternary hybrid nanofluid coolant on the thermal performance for automotive radiator, Heat and Mass Transfer, Vol. 57, No. 5, pp. 873-887, 2021.
[10] V. Kumar, R. R. Sahoo, Experimental and numerical study on cooling system waste heat recovery for engine air preheating by ternary hybrid nanofluid, Journal of Enhanced Heat Transfer, Vol. 28, No. 4, 2021.
[11] A. Dezfulizadeh, A. Aghaei, A. Hassani Joshaghani, M. M. Najafizadeh, Exergy efficiency of a novel heat exchanger under MHD effects filled with water-based Cu–SiO2-MWCNT ternary hybrid nanofluid based on empirical data, Journal of Thermal Analysis and Calorimetry, Vol. 147, No. 7, pp. 4781-4804, 2022.
[12] Z. Mahmood, S. E. Alhazmi, U. Khan, M. Z. Bani-Fwaz, A. M. Galal, Unsteady MHD stagnation point flow of ternary hybrid nanofluid over a spinning sphere with Joule heating, International Journal of Modern Physics B, Vol. 36, No. 32, pp. 2250230, 2022.
[13] F. A. Alwawi, M. Z. Swalmeh, A. S. Hamarsheh, Computational simulation and parametric analysis of the effectiveness of ternary nano-composites in improving magneto-micropolar liquid heat transport performance, Symmetry, Vol. 15, No. 2, pp. 429, 2023.
[14] M. Mumtaz, S. Islam, H. Ullah, Z. Shah, Chemically reactive MHD convective flow and heat transfer performance of ternary hybrid nanofluid past a curved stretching sheet, Journal of Molecular Liquids, Vol. 390, pp. 123179, 2023.
[15] K.-L. Hsiao, Combined electrical MHD heat transfer thermal extrusion system using Maxwell fluid with radiative and viscous dissipation effects, Applied Thermal Engineering, Vol. 112, pp. 1281-1288, 2017.
[16] O. U. Mehmood, M. M. Maskeen, A. Zeeshan, Electromagnetohydrodynamic transport of Al2O3 nanoparticles in ethylene glycol over a convectively heated stretching cylinder, Advances in Mechanical Engineering, Vol. 9, No. 11, pp. 1687814017735282, 2017.
[17] S. Jakeer, S. Reddy, A. Rashad, M. L. Rupa, C. Manjula, Nonlinear analysis of Darcy-Forchheimer flow in EMHD ternary hybrid nanofluid (Cu-CNT-Ti/water) with radiation effect, Forces in Mechanics, Vol. 10, pp. 100177, 2023.
[18] S. Kumar, S. K. Prasad, J. Banerjee, Analysis of flow and thermal field in nanofluid using a single phase thermal dispersion model, Applied Mathematical Modelling, Vol. 34, No. 3, pp. 573-592, 2010.
[19] M. Sheikholeslami, S. Shehzad, Numerical analysis of Fe3O4–H2O nanofluid flow in permeable media under the effect of external magnetic source, International Journal of Heat and Mass Transfer, Vol. 118, pp. 182-192, 2018.
[20] A. H. Ghobadi, M. G. Hassankolaei, A numerical approach for MHD Al2O3–TiO2/H2O hybrid nanofluids over a stretching cylinder under the impact of shape factor, Heat Transfer—Asian Research, Vol. 48, No. 8, pp. 4262-4282, 2019.
[21] M. Shanmugapriya, R. Sundareswaran, P. S. Kumar, G. Rangasamy, Impact of nanoparticle shape in enhancing heat transfer of magnetized ternary hybrid nanofluid, Sustainable Energy Technologies and Assessments, Vol. 53, pp. 102700, 2022.
[22] R. R. Sahoo, Heat transfer and second law characteristics of radiator with dissimilar shape nanoparticle-based ternary hybrid nanofluid, Journal of Thermal Analysis and Calorimetry, Vol. 146, No. 2, pp. 827-839, 2021.
[23] R. R. Sahoo, Thermo-hydraulic characteristics of radiator with various shape nanoparticle-based ternary hybrid nanofluid, Powder technology, Vol. 370, pp. 19-28, 2020.
[24] M. Sheikholeslami, T. Hayat, A. Alsaedi, MHD free convection of Al2O3–water nanofluid considering thermal radiation: a numerical study, International Journal of Heat and Mass Transfer, Vol. 96, pp. 513-524, 2016.
[25] S. EL-Kabeir, A. Rashad, W. Khan, Z. M. Abdelrahman, Micropolar ferrofluid flow via natural convective about a radiative isoflux sphere, Advances in Mechanical Engineering, Vol. 13, No. 2, pp. 1687814021994392, 2021.
[26] S. A. Lone, S. Anwar, Z. Raizah, P. Kumam, T. Seangwattana, A. Saeed, Analysis of the time-dependent magnetohydrodynamic Newtonian fluid flow over a rotating sphere with thermal radiation and chemical reaction, Heliyon, Vol. 9, No. 7, 2023.
[27] M. Z. Swalmeh, F. Shatat, F. A. Alwawi, M. A. H. Ibrahim, I. M. Sulaiman, N. Yaseen, M. F. Naser, Effectiveness of radiation on magneto-combined convective boundary layer flow in polar nanofluid around a spherical shape, Fractal and Fractional, Vol. 6, No. 7, pp. 383, 2022.
[28] E. A. El-Sayed, F. A. Alwawi, F. Aljuaydi, M. Z. Swalmeh, Computational insights into shape effects and heat transport enhancement in MHD-free convection of polar ternary hybrid nanofluid around a radiant sphere, Scientific Reports, Vol. 14, No. 1, pp. 1225, 2024.
[29] R. HAMILTO, Thermal conductivity of heterogeneous two-component systems, I&EC Fundamentals, Vol. 1, pp. 182-187, 1962.
[30] I. Zahmatkesh, M. Sheremet, L. Yang, S. Z. Heris, M. Sharifpur, J. P. Meyer, M. Ghalambaz, S. Wongwises, D. Jing, O. Mahian, Effect of nanoparticle shape on the performance of thermal systems utilizing nanofluids: A critical review, Journal of Molecular Liquids, Vol. 321, pp. 114430, 2021.
[31] Y. Lin, B. Li, L. Zheng, G. Chen, Particle shape and radiation effects on Marangoni boundary layer flow and heat transfer of copper-water nanofluid driven by an exponential temperature, Powder Technology, Vol. 301, pp. 379-386, 2016.
[32] S. U. Jan, U. Khan, M. Abd El-Rahman, S. Islam, A. M. Hassan, A. Ullah, Effect of variable thermal conductivity of ternary hybrid nanofluids over a stretching sheet with convective boundary conditions and magnetic field, Results in Engineering, Vol. 20, pp. 101531, 2023.
[33] T. Hayat, B. Ahmed, F. Abbasi, A. Alsaedi, Hydromagnetic peristalsis of water based nanofluids with temperature dependent viscosity: a comparative study, Journal of Molecular Liquids, Vol. 234, pp. 324-329, 2017.
[34] H. F. Oztop, E. Abu-Nada, Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids, International journal of heat and fluid flow, Vol. 29, No. 5, pp. 1326-1336, 2008.
[35] M. Sheikholeslami, M. Gorji-Bandpy, D. Ganji, Numerical investigation of MHD effects on Al2O3–water nanofluid flow and heat transfer in a semi-annulus enclosure using LBM, Energy, Vol. 60, pp. 501-510, 2013.
[36] A. Siddiqui, M. Sheikholeslami, TiO 2-water nanofluid in a porous channel under the effects of an inclined magnetic field and variable thermal conductivity, Applied Mathematics and Mechanics, Vol. 39, pp. 1201-1216, 2018.
[37] T. Maranna, U. S. Mahabaleshwar, M. I. Kopp, The Impact of Marangoni Convection and Radiation on Flow of Ternary Nanofluid in a Porous Medium with Mass Transpiration, Journal of Applied and Computational Mechanics, Vol. 9, No. 2, pp. 487-497, 2023.
[38] M. Z. Swalmeh, F. A. Alwawi, A. Altawallbeh, K. Naganthran, I. Hashim, On the optimized energy transport rate of magnetized micropolar fluid via ternary hybrid ferro-nanosolids: A numerical report, Heliyon, Vol. 9, No. 12, 2023.
[39] G. R. Rajput, B. P. Jadhav, V. S. Patil, S. Salunkhe, Effects of nonlinear thermal radiation over magnetized stagnation point flow of Williamson fluid in porous media driven by stretching sheet, Heat Transfer, Vol. 50, No. 3, pp. 2543-2557, 2021.
[40] E. R. El-Zahar, A. Algelany, A. M. Rashad, Sinusoidal natural convective flow of non-newtonian nanoliquid over a radiative vertical plate in a saturated porous medium, IEEE Access, Vol. 8, pp. 136131-136140, 2020.
[41] E. R. EL-Zahar, A. M. Rashad, L. F. Seddek, The impact of sinusoidal surface temperature on the natural convective flow of a ferrofluid along a vertical plate, Mathematics, Vol. 7, No. 11, pp. 1014, 2019.
[42] E. El-Zahar, A. Rashad, W. Saad, L. Seddek, Magneto-hybrid nanofluids flow via mixed convection past a radiative circular cylinder, Scientific Reports, Vol. 10, No. 1, pp. 10494, 2020.
[43] J. Merkin, Free convection boundary layer on an isothermal horizontal cylinder, in Heat Transfer Conference, St. Louis, Mo., 1976, pp. ASME 5 p.
[44] M. M. Molla, M. A. Hossain, M. C. Paul, Natural convection flow from an isothermal horizontal circular cylinder in presence of heat generation, International Journal of Engineering Science, Vol. 44, No. 13-14, pp. 949-958, 2006.