[1] M. Ciarletta, A. Scalia, Some results in linear theory of thermomicrostretch elastic solids, Meccanica, Vol. 39, pp. 191-206, 2004.
[2] L. F. Codarcea-Munteanu, A. N. Chirilă, M. I. Marin, Modeling fractional order strain in dipolar thermoelasticity, IFAC-PapersOnLine, Vol. 51, No. 2, pp. 601-606, 2018.
[3] L. Codarcea-Munteanu, M. Marin, Influence of Geometric Equations in Mixed Problem of Porous Micromorphic Bodies with Microtemperature, Mathematics, Vol. 8, No. 8, pp. 1386, 2020.
[4] M. Marin, R. Agarwal, L. Codarcea, A mathematical model for three-phase-lag dipolar thermoelastic bodies, Journal of Inequalities and Applications, Vol. 2017, pp. 1-16, 2017.
[5] I. Abbas, A. Hobiny, M. Marin, Photo-thermal interactions in a semi-conductor material with cylindrical cavities and variable thermal conductivity, Journal of Taibah University for Science, Vol. 14, No. 1, pp. 1369-1376, 2020.
[6] S. M. Abo-Dahab, A. E. Abouelregal, M. Marin, Generalized thermoelastic functionally graded on a thin slim strip non-Gaussian laser beam, Symmetry, Vol. 12, No. 7, pp. 1094, 2020.
[7] D. Chandrasekharaiah, A uniqueness theorem in the theory of elastic materials with voids, Journal of elasticity, Vol. 18, No. 2, pp. 173-179, 1987.
[8] S. Chiriţă, On some exponential decay estimates for porous elastic cylinders, Archives of Mechanics, Vol. 56, No. 3, pp. 233-246, 2004.
[9] L. Codarcea-Munteanu, M. Marin, A study on the thermoelasticity of three-phase-lag dipolar materials with voids, Boundary Value Problems, Vol. 2019, pp. 1-24, 2019.
[10] R. Kumar, S. Mukhopadhyay, Effects of three phase lags on generalized thermoelasticity for an infinite medium with a cylindrical cavity, Journal of Thermal Stresses, Vol. 32, No. 11, pp. 1149-1165, 2009.
[11] R. Kumar, A. K. Vashisth, S. Ghangas, Waves in anisotropic thermoelastic medium with phase lag, two-temperature and void, Mater. Phys. Mech, Vol. 35, No. 1, pp. 126-138, 2018.
[12] M. Marin, Contributions on uniqueness in thermoelastodynamics on bodies with voids, Cienc. Mat.(Havana), Vol. 16, No. 2, pp. 101-109, 1998.
[13] M. Marin, M. I. Othman, S. Vlase, L. Codarcea-Munteanu, Thermoelasticity of initially stressed bodies with voids: a domain of influence, Symmetry, Vol. 11, No. 4, pp. 573, 2019.
[14] M. Alizadeh, M. Choulaei, M. Roshanfar, J. Dargahi, Vibrational characteristic of heart stent using finite element model, International journal of health sciences, Vol. 6, No. S4, pp. 4095-4106, 06/15, 2022.
[15] L. Codarcea-Munteanu, M. Marin, Micropolar thermoelasticity with voids using fractional order strain, Models and Theories in Social Systems, pp. 133-147, 2019.
[16] R. Kumar, P. Kaushal, R. Sharma, Axisymmetric vibration for micropolar porous thermoelastic circular plate, 2017.
[17] M. Marin, Generalized solutions in elasticity of micropolar bodies with voids, Revista de la Academia Canaria de Ciencias:= Folia Canariensis Academiae Scientiarum, Vol. 8, No. 1, pp. 101-106, 1996.
[18] M. Goodman, S. Cowin, A continuum theory for granular materials, Archive for Rational Mechanics and Analysis, Vol. 44, No. 4, pp. 249-266, 1972.
[19] S. C. Cowin, J. W. Nunziato, Linear elastic materials with voids, Journal of elasticity, Vol. 13, pp. 125-147, 1983.
[20] J. W. Nunziato, S. C. Cowin, A nonlinear theory of elastic materials with voids, Archive for Rational Mechanics and Analysis, Vol. 72, No. 2, pp. 175-201, 1979/06/01, 1979.
[21] D. Ieşan, Mecanica generalizată a solidelor, Univ.„Al. I. Cuza"“Iași, 1980.
[22] D. Ieşan, A theory of thermoelastic materials with voids, Acta Mechanica, Vol. 60, pp. 67-89, 1986.
[23] A. E. Green, P. Naghdi, A re-examination of the basic postulates of thermomechanics, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, Vol. 432, No. 1885, pp. 171-194, 1991.
[24] A. Green, P. Naghdi, Thermoelasticity without energy dissipation, Journal of elasticity, Vol. 31, No. 3, pp. 189-208, 1993.
[25] A. E. Green, P. Naghdi, On thermodynamics and the nature of the second law, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, Vol. 357, No. 1690, pp. 253-270, 1977.
[26] D. Chandrasekharaiah, A uniqueness theorem in the theory of thermoelasticity without energy dissipation, Journal of Thermal Stresses, Vol. 19, No. 3, pp. 267-272, 1996.
[27] M. Choulaei, A.-H. Bouzid, Stress analysis of bolted flange joints with different shell connections, in Proceeding of, American Society of Mechanical Engineers, pp. V012T12A029.
[28] M. Ciarletta, A theory of micropolar thermoelasticity without energy dissipation, Journal of Thermal Stresses, Vol. 22, No. 6, pp. 581-594, 1999.
[29] L. Nappa, Spatial decay estimates for the evolution equations of linear thermoelasticity without energy dissipation, Journal of thermal stresses, Vol. 21, No. 5, pp. 581-592, 1998.
[30] F. Passarella, V. Zampoli, On the theory of micropolar thermoelasticity without energy dissipation, Journal of Thermal Stresses, Vol. 33, No. 4, pp. 305-317, 2010.
[31] S. Chiriţă, M. Ciarletta, Reciprocal and variational principles in linear thermoelasticity without energy dissipation, Mechanics Research Communications, Vol. 37, No. 3, pp. 271-275, 2010.
[32] M. Marin, A. Seadawy, S. Vlase, A. Chirila, On mixed problem in thermoelasticity of type III for Cosserat media, Journal of Taibah University for Science, Vol. 16, No. 1, pp. 1264-1274, 2022.
[33] D. Chandrasekharaiah, Hyperbolic thermoelasticity: a review of recent literature, 1998.
[34] R. Quintanilla, Existence in thermoelasticity without energy dissipation, Journal of thermal stresses, Vol. 25, No. 2, pp. 195-202, 2002.
[35] M. Marin, A. Chirilă, L. Codarcea, S. Vlase, On vibrations in Green-Naghdi thermoelasticity of dipolar bodies, Analele ştiinţifice ale Universităţii" Ovidius" Constanţa. Seria Matematică, Vol. 27, No. 1, pp. 125-140, 2019.
[36] I. A. Abbas, Generalized magneto-thermoelastic interaction in a fiber-reinforced anisotropic hollow cylinder, International Journal of Thermophysics, Vol. 33, pp. 567-579, 2012.
[37] E. M. Abo-Eldahab, R. Adel, H. M. Mobarak, M. Abdelhakem, The effects of magnetic field on boundary layer nano-fluid flow over stretching sheet, Appl Math Inf Sci, Vol. 15, No. 6, pp. 731-741, 2021.
[38] M. I. Othman, M. Fekry, M. Marin, Plane waves in generalized magneto-thermo-viscoelastic medium with voids under the effect of initial stress and laser pulse heating, Struct. Eng. Mech, Vol. 73, No. 6, pp. 621-629, 2020.
[39] A. M. Zenkour, I. A. Abbas, Magneto-thermoelastic response of an infinite functionally graded cylinder using the finite element method, Journal of Vibration and Control, Vol. 20, No. 12, pp. 1907-1919, 2014.
[40] S. Chirită, Spatial decay estimates for solutions describing harmonic vibrations in a thermoelastic cylinder, Journal of thermal stresses, Vol. 18, No. 4, pp. 421-436, 1995.