[1] J.-Y. Niu, C.-H. He, A. A. Alsolami, Symmetry-breaking and pull-down motion for the Helmholtz–Duffing oscillator, Journal of Low Frequency Noise, Vibration and Active Control, pp. 14613484231193261, 2023.
[2] M. Alizadeh, M. Choulaei, M. Roshanfar, J. Dargahi, Vibrational characteristic of heart stent using finite element model, International journal of health sciences, Vol. 6, No. S4, pp. 4095-4106, 06/15, 2022.
[3] D. J. Kaup, A. C. Newell, An exact solution for a derivative nonlinear Schrödinger equation, Journal of Mathematical Physics, Vol. 19, No. 4, pp. 798-801, 1978.
[4] H. M. Ahmed, W. B. Rabie, M. A. Ragusa, Optical solitons and other solutions to Kaup–Newell equation with Jacobi elliptic function expansion method, Analysis and Mathematical Physics, Vol. 11, pp. 1-16, 2021.
[5] A. Biswas, M. Ekici, A. Sonmezoglu, R. T. Alqahtani, Sub-pico-second chirped optical solitons in mono-mode fibers with Kaup–Newell equation by extended trial function method, Optik, Vol. 168, pp. 208-216, 2018.
[6] X. Hu, M. Arshad, L. Xiao, N. Nasreen, A. Sarwar, Bright-dark and multi wave novel solitons structures of Kaup-Newell Schrödinger equations and their applications, Alexandria Engineering Journal, Vol. 60, No. 4, pp. 3621-3630, 2021.
[7] M. Choulaei, A.-H. Bouzid, Stress analysis of bolted flange joints with different shell connections, in Proceeding of, American Society of Mechanical Engineers, pp. V012T12A029.
[8] S. Lou, X. Hao, M. Jia, Higher dimensional reciprocal integrable Kaup–Newell systems, Acta Phys. Sin., Vol. 72, pp. 100204, 2023.
[9] J.-H. He, C.-H. He, T. Saeed, A fractal modification of Chen–Lee–Liu equation and its fractal variational principle, International Journal of Modern Physics B, Vol. 35, No. 21, pp. 2150214, 2021.
[10] X.-Y. Liu, Y.-P. Liu, Z.-W. Wu, Variational principle for one-dimensional inviscid flow, Thermal Science, Vol. 26, No. 3 Part B, pp. 2465-2469, 2022.
[11] Y. Wang, K. A. Gepreel, Y.-J. Yang, Variational principles for fractal boussinesq-like B (m, n) equation, FRACTALS (fractals), Vol. 31, No. 07, pp. 1-8, 2023.
[12] A. Biswas, D. Milovic, R. Kohl, Optical soliton perturbation in a log-law medium with full nonlinearity by He's semi-inverse variational principle, Inverse Problems in Science and Engineering, Vol. 20, No. 2, pp. 227-232, 2012.