[1] L. Mulfinger, S. D. Solomon, M. Bahadory, A. V. Jeyarajasingam, S. A. Rutkowsky, C. Boritz, Synthesis and Study of Silver Nanoparticles, Journal of Chemical Education, Vol. 84, No. 2, pp. 322, 2007/02/01, 2007.
[2] D. Yu, V. W.-W. Yam, Controlled Synthesis of Monodisperse Silver Nanocubes in Water, Journal of the American Chemical Society, Vol. 126, No. 41, pp. 13200-13201, 2004/10/01, 2004.
[3] H.-W. Jang, B.-Y. Hwang, K.-W. Lee, Y.-M. Kim, J.-Y. Kim, Controlling the size of silver nanowires produced by a tetrabutylammonium dichlorobromide salt-based polyol process: Kinetics of silver crystal growth, AIP Advances, Vol. 8, No. 2, pp. 025303, 2018.
[4] A. Ghafouri Pourkermani, B. Azizi, H. Nejat Pishkenari, Vibrational analysis of Ag, Cu and Ni nanobeams using a hybrid continuum-atomistic model, International Journal of Mechanical Sciences, Vol. 165, pp. 105208, 2020/01/01/, 2020.
[5] Z. Rakocevic, R. Petrovic, S. Strbac, Surface roughness of ultra-thin silver films sputter depositedon a glass, Journal of Microscopy, Vol. 232, No. 3, pp. 595-600, 2008/12/01, 2008.
[6] J.-M. Liu, X.-P. Yan, Competitive aptamer bioassay for selective detection of adenosine triphosphate based on metal-paired molecular conformational switch and fluorescent gold nanoclusters, Biosensors and Bioelectronics, Vol. 36, No. 1, pp. 135-141, 2012/06/01/, 2012.
[7] S. Chernousova, M. Epple, Silver as Antibacterial Agent: Ion, Nanoparticle, and Metal, Angewandte Chemie International Edition, Vol. 52, No. 6, pp. 1636-1653, 2013/02/04, 2013.
[8] M. Chen, I. Y. Phang, M. R. Lee, J. K. W. Yang, X. Y. Ling, Layer-By-Layer Assembly of Ag Nanowires into 3D Woodpile-like Structures to Achieve High Density “Hot Spots” for Surface-Enhanced Raman Scattering, Langmuir, Vol. 29, No. 23, pp. 7061-7069, 2013/06/11, 2013.
[9] Y. Tang, W. He, S. Wang, Z. Tao, L. Cheng, One step synthesis of silver nanowires used in preparation of conductive silver paste, Journal of Materials Science: Materials in Electronics, Vol. 25, No. 7, pp. 2929-2933, 2014/07/01, 2014.
[10] I. X. Yin, J. Zhang, I. S. Zhao, M. L. Mei, Q. Li, C. H. Chu, The Antibacterial Mechanism of Silver Nanoparticles and Its Application in Dentistry, International Journal of Nanomedicine, Vol. 15, pp. 2555-2562, 2020/12/01, 2020.
[11] P. Prosposito, L. Burratti, I. Venditti, Silver Nanoparticles as Colorimetric Sensors for Water Pollutants, Chemosensors, 8, 2020.
[12] J. Kim, S. H. Lee, H. Kim, S. H. Kim, C. E. Park, 3D Hollow Framework Silver Nanowire Electrodes for High-Performance Bottom-Contact Organic Transistors, ACS Applied Materials & Interfaces, Vol. 7, No. 26, pp. 14272-14278, 2015/07/08, 2015.
[13] X. Hong, J. Wen, X. Xiong, Y. Hu, Shape effect on the antibacterial activity of silver nanoparticles synthesized via a microwave-assisted method, Environmental Science and Pollution Research, Vol. 23, No. 5, pp. 4489-4497, 2016/03/01, 2016.
[14] M. Halder, A. K. Meikap, Influence on loading terbium manganate on optical, thermal and electrical properties of polyvinyl alcohol nanocomposite films, Journal of Materials Science: Materials in Electronics, Vol. 30, No. 5, pp. 4792-4806, 2019/03/01, 2019.
[15] S. Singh, A. Bharti, V. K. Meena, Structural, thermal, zeta potential and electrical properties of disaccharide reduced silver nanoparticles, Journal of Materials Science: Materials in Electronics, Vol. 25, No. 9, pp. 3747-3752, 2014/09/01, 2014.
[16] B. N. Khlebtsov, V. A. Khanadeev, I. L. Maksimova, G. S. Terentyuk, N. G. Khlebtsov, Silver nanocubes and gold nanocages: Fabrication and optical and photothermal properties, Nanotechnologies in Russia, Vol. 5, No. 7, pp. 454-468, 2010/08/01, 2010.
[17] M. Asoro, J. Damiano, P. J. Ferreira, Size Effects on the Melting Temperature of Silver Nanoparticles: In-Situ TEM Observations, Microscopy and Microanalysis, Vol. 15, No. S2, pp. 706-707, 2009.
[18] M. A. Asoro, D. Kovar, J. Damiano, P. J. Ferreira, Scale Effects on the Melting Behavior of Silver Nanoparticles, Microscopy and Microanalysis, Vol. 16, No. S2, pp. 1802-1803, 2010.
[19] A. D. Kirshenbaum, J. A. Cahill, A. V. Grosse, The density of liquid silver from its melting point to its normal boiling point 2450°K, Journal of Inorganic and Nuclear Chemistry, Vol. 24, No. 3, pp. 333-336, 1962/03/01/, 1962.
[20] G. L. Allen, R. A. Bayles, W. W. Gile, W. A. Jesser, Small particle melting of pure metals, Thin Solid Films, Vol. 144, No. 2, pp. 297-308, 1986/11/15/, 1986.
[21] Q. S. Mei, K. Lu, Melting and superheating of crystalline solids: From bulk to nanocrystals, Progress in Materials Science, Vol. 52, No. 8, pp. 1175-1262, 2007/11/01/, 2007.
[22] K. Kang, S. Qin, C. Wang, Size-dependent melting: Numerical calculations of the phonon spectrum, Physica E: Low-dimensional Systems and Nanostructures, Vol. 41, No. 5, pp. 817-821, 2009/03/01/, 2009.
[23] O. A. Yeshchenko, I. M. Dmitruk, A. A. Alexeenko, A. V. Kotko, Surface plasmon as a probe for melting of silver nanoparticles, Nanotechnology, Vol. 21, No. 4, pp. 045203, 2009/12/10, 2010.
[24] F. G. Shi, Size dependent thermal vibrations and melting in nanocrystals, Journal of Materials Research, Vol. 9, No. 5, pp. 1307-1313, 1994/05/01, 1994.
[25] K. J. Hanszen, Theoretische Untersuchungen über den Schmelzpunkt kleiner Kügelchen, Zeitschrift für Physik, Vol. 157, No. 5, pp. 523-553, 1960/10/01, 1960.
[26] K. K. Nanda, S. N. Sahu, S. N. Behera, Liquid-drop model for the size-dependent melting of low-dimensional systems, Physical Review A, Vol. 66, No. 1, pp. 013208, 07/29/, 2002.
[27] A. P. Chernyshev, Effect of nanoparticle size on the onset temperature of surface melting, Materials Letters, Vol. 63, No. 17, pp. 1525-1527, 2009/07/15/, 2009.
[28] S. Alavi, 2020, Molecular simulations: fundamentals and practice, John Wiley & Sons,
[29] H. A. Alarifi, M. Atiş, C. Özdoğan, A. Hu, M. Yavuz, Y. Zhou, Determination of Complete Melting and Surface Premelting Points of Silver Nanoparticles by Molecular Dynamics Simulation, The Journal of Physical Chemistry C, Vol. 117, No. 23, pp. 12289-12298, 2013/06/13, 2013.
[30] Z. Qiao, H. Feng, J. Zhou, Molecular dynamics simulations on the melting of gold nanoparticles, Phase Transitions, Vol. 87, No. 1, pp. 59-70, 2014/01/02, 2014.
[31] J. Cui, L. Yang, Y. Wang, Molecular Dynamics Simulation Study of the Melting of Silver Nanoparticles, Integrated Ferroelectrics, Vol. 145, No. 1, pp. 1-9, 2013/01/01, 2013.
[32] Z. Ahadi, M. Shadman Lakmehsari, S. Kumar Singh, J. Davoodi, Stability and thermal behavior of molybdenum disulfide nanotubes: Nonequilibrium molecular dynamics simulation using REBO potential, Journal of Applied Physics, Vol. 122, No. 22, pp. 224303, 2017.
[33] B. Azizi, S. Rezaee, M. J. Hadianfard, K. H. Dehnou, A comprehensive study on the mechanical properties and failure mechanisms of graphyne nanotubes (GNTs) in different phases, Computational Materials Science, Vol. 182, pp. 109794, 2020/09/01/, 2020.
[34] M. Kohestanian, Z. Sohbatzadeh, S. Rezaee, Mechanical properties of continuous fiber composites of cubic silicon carbide (3C-SiC) / different types of carbon nanotubes (SWCNTs, RSWCNTs, and MWCNTs): A molecular dynamics simulation, Materials Today Communications, Vol. 23, pp. 100922, 2020/06/01/, 2020.
[35] R. Momen, R. Rezaee, B. Azizi, S. Rezaee, H. Hou, X. Ji, Evaluation of mechanical properties of multilayer graphyne-based structures as anode materials for lithium-ions batteries, Eur. Phys. J. Plus, Vol. 137, No. 3, //, 2022.
[36] B. Azizi, M. Shariati, S. S. M. N. Souq, M. Hosseini, Bending and stretching behavior of graphene structures using continuum models calibrated with modal analysis, Applied Mathematical Modelling, Vol. 114, pp. 466-487, 2023/02/01/, 2023.
[37] M. Shariati, S. S. M. N. Souq, B. Azizi, Surface- and nonlocality-dependent vibrational behavior of graphene using atomistic-modal analysis, International Journal of Mechanical Sciences, Vol. 228, pp. 107471, 2022/08/15/, 2022.
[38] M. Shariati, B. Azizi, M. Hosseini, M. Shishesaz, On the calibration of size parameters related to non-classical continuum theories using molecular dynamics simulations, International Journal of Engineering Science, Vol. 168, pp. 103544, 2021/11/01/, 2021.
[39] B. Azizi, M. Hosseini, M. Shariati, On the hybrid atomistic-continuum model for vibrational analysis of α-, β-, and γ-graphyne circular nano-plates, Waves in Random and Complex Media, pp. 1-36, 2022.
[40] N. Ertekin, S. Rezaee, B. Azizi, Mechanical properties and role of 2D alkynyl carbon monolayers in the progress of lithium-air batteries, Journal of Energy Storage, Vol. 72, pp. 108558, 2023/11/25/, 2023.
[41] M. Ghoohestani, S. Rezaee, E. Kadivar, M. A. Esmaeilbeig, Reactive-dynamic characteristics of a nanobubble collapse near a solid boundary using molecular dynamic simulation, Physics of Fluids, Vol. 35, No. 2, pp. 022003, 2023.
[42] M. Ghoohestani, S. Rezaee, E. Kadivar, O. el Moctar, Thermodynamic effects on nanobubble's collapse-induced erosion using molecular dynamic simulation, Physics of Fluids, Vol. 35, No. 7, pp. 073319, 2023.
[43] H. Araghi, S. Rezaee, Z. Zabihi, Ionic conductivity of oxygen in BaTiO3, Ba0.9A0.1TiO3-δ (A: Li+, Na+, Ca2+), and BaTi0.9B0.1O3-δ (B: V3+, Cr3+, Si4+) crystals with cubic perovskite structure as cathode in fuel cell: A molecular dynamics study, Journal of Solid State Chemistry, Vol. 258, pp. 640-646, 2018/02/01/, 2018.
[44] N. Ertekin, S. Rezaee, Lithium-Doped Barium Titanate as Advanced Cells of ReRAMs Technology, Journal of Electronic Materials, Vol. 52, No. 2, pp. 1575-1589, 2023/02/01, 2023.
[45] N. Ertekin, S. Rezaee, Effect of anion and cation vacancies pairs in conduct of the Ba1−3xTiO31−x and BaTi(1−3x2)O3(1−x) (x = 0.0033) as a memristor, Materials Today Communications, Vol. 31, pp. 103333, 2022/06/01/, 2022.
[46] N. Ashcroft, N. Mermin, Solid State Physics, Holt, Rinehart and Winston, New York, Vol. 2005, pp. 403, 1976.
[47] S. M. Foiles, M. I. Baskes, M. S. Daw, Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys, Physical Review B, Vol. 33, No. 12, pp. 7983-7991, 06/15/, 1986.
[48] M. M. Blazhynska, A. Kyrychenko, O. N. Kalugin, Molecular dynamics simulation of the size-dependent morphological stability of cubic shape silver nanoparticles, Molecular Simulation, Vol. 44, No. 12, pp. 981-991, 2018/08/13, 2018.
[49] Y. Dong, Y. Xie, L. Hu, C. Xu, W. Guo, G. Pan, Q. Wang, F. Qian, J. Sun, Graphene-assisted preparation of large-scale single-crystal Ag(111) nanoparticle arrays for surface-enhanced Raman scattering, Nanotechnology, Vol. 32, No. 2, pp. 025301, 2020/10/12, 2021.
[50] M. S. Daw, M. I. Baskes, Semiempirical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals, Physical Review Letters, Vol. 50, No. 17, pp. 1285-1288, 04/25/, 1983.
[51] M. S. Daw, M. I. Baskes, Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals, Physical Review B, Vol. 29, No. 12, pp. 6443-6453, 06/15/, 1984.
[52] V. G. Grigoryan, D. Alamanova, M. Springborg, Structure and energetics of CuN clusters with (2 ≤ N ≤ 150) : An embedded-atom-method study, Physical Review B, Vol. 73, No. 11, pp. 115415, 03/15/, 2006.
[53] S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, Journal of Computational Physics, Vol. 117, No. 1, pp. 1-19, 1995/03/01/, 1995.
[54] A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool, Modelling and Simulation in Materials Science and Engineering, Vol. 18, No. 1, pp. 015012, 2009/12/15, 2010.
[55] W. C. Swope, H. C. Andersen, P. H. Berens, K. R. Wilson, A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters, The Journal of Chemical Physics, Vol. 76, No. 1, pp. 637-649, 1982.
[56] S. Rezaee, H. Araghi, H. Noshad, Z. Zabihi, Physical characteristics of fluorine-doped lithium oxide as advanced material for solid-electrolyte-interphase applications of lithium–air batteries, The European Physical Journal Plus, Vol. 137, No. 10, pp. 1194, 2022/10/29, 2022.
[57] S. Rezaee, H. Araghi, H. Noshad, Z. Zabihi, Physical characteristics of nickel thin-films and nickel thin-film foams as Li-air batteries anode and cathode current collectors, Journal of Molecular Liquids, Vol. 383, pp. 122171, 2023/08/01/, 2023.
[58] M. W. Zemansky, R. Dittman, Heat and thermodynamics: an intermediate textbook, (No Title), 1968.
[59] D. Halliday, R. Resnick, J. Walker, 2013, Fundamentals of physics, John Wiley & Sons,
[60] W. Luo, W. Hu, S. Xiao, Size Effect on the Thermodynamic Properties of Silver Nanoparticles, The Journal of Physical Chemistry C, Vol. 112, No. 7, pp. 2359-2369, 2008/02/01, 2008.
[61] R. Amils, C. Ellis-Evans, H. Hinghofer-Szalkay, 2007, Life in extreme environments, Springer,
[62] F. Robb, G. Antranikian, D. Grogan, A. Driessen, 2007, Thermophiles: biology and technology at high temperatures, CRC Press,
[63] P. Pourali, M. Baserisalehi, S. Afsharnezhad, J. Behravan, R. Ganjali, N. Bahador, S. Arabzadeh, The effect of temperature on antibacterial activity of biosynthesized silver nanoparticles, BioMetals, Vol. 26, No. 1, pp. 189-196, 2013/02/01, 2013.