Influence of spherical and cubical geometry of silver nanoparticles on thermal characteristics

Document Type : Research Paper

Authors

1 School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China

2 Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China

Abstract

Antibacterial activity of silver nanoparticles with spherical or cubic shapes in medical science will render it attractive. Considering the physical characteristics like thermal features as crucial factors are essential for choosing nanospheres or nanocubes with respect to operating temperature and stability. Therefore, this research probes the melting process, the surface premelting points (Tsm), the complete melting point (Tm), the phase transition, and the specific heat capacity at a constant volume (Cv) of silver nanospheres and nanocubes via a molecular dynamics approach. Regarding these aims, different approaches have been employed to achieve high accuracy. The results indicate that the geometry of nanoparticles dramatically influences the Tsm and Tm, and nanocubes have lower Tsm and Tm than nanospheres. Moreover, the nanocubes are melted from corners toward the cube center while the nanospheres melt in the radius direction. In contrast, Cv of silver nanospheres and nanocubes is almost identical, demonstrating that the Cv is independent of geometry. In addition, the values of Cv for the nanoparticles are close to the bulk value, which indicates that by changing the dimension of silver from bulk to nanoparticles, the specific heat capacity will not change, and this value is an intensive property.

Keywords

Main Subjects

[1]          L. Mulfinger, S. D. Solomon, M. Bahadory, A. V. Jeyarajasingam, S. A. Rutkowsky, C. Boritz, Synthesis and Study of Silver Nanoparticles, Journal of Chemical Education, Vol. 84, No. 2, pp. 322, 2007/02/01, 2007.
[2]          D. Yu, V. W.-W. Yam, Controlled Synthesis of Monodisperse Silver Nanocubes in Water, Journal of the American Chemical Society, Vol. 126, No. 41, pp. 13200-13201, 2004/10/01, 2004.
[3]          H.-W. Jang, B.-Y. Hwang, K.-W. Lee, Y.-M. Kim, J.-Y. Kim, Controlling the size of silver nanowires produced by a tetrabutylammonium dichlorobromide salt-based polyol process: Kinetics of silver crystal growth, AIP Advances, Vol. 8, No. 2, pp. 025303, 2018.
[4]          A. Ghafouri Pourkermani, B. Azizi, H. Nejat Pishkenari, Vibrational analysis of Ag, Cu and Ni nanobeams using a hybrid continuum-atomistic model, International Journal of Mechanical Sciences, Vol. 165, pp. 105208, 2020/01/01/, 2020.
[5]          Z. Rakocevic, R. Petrovic, S. Strbac, Surface roughness of ultra-thin silver films sputter depositedon a glass, Journal of Microscopy, Vol. 232, No. 3, pp. 595-600, 2008/12/01, 2008.
[6]          J.-M. Liu, X.-P. Yan, Competitive aptamer bioassay for selective detection of adenosine triphosphate based on metal-paired molecular conformational switch and fluorescent gold nanoclusters, Biosensors and Bioelectronics, Vol. 36, No. 1, pp. 135-141, 2012/06/01/, 2012.
[7]          S. Chernousova, M. Epple, Silver as Antibacterial Agent: Ion, Nanoparticle, and Metal, Angewandte Chemie International Edition, Vol. 52, No. 6, pp. 1636-1653, 2013/02/04, 2013.
[8]          M. Chen, I. Y. Phang, M. R. Lee, J. K. W. Yang, X. Y. Ling, Layer-By-Layer Assembly of Ag Nanowires into 3D Woodpile-like Structures to Achieve High Density “Hot Spots” for Surface-Enhanced Raman Scattering, Langmuir, Vol. 29, No. 23, pp. 7061-7069, 2013/06/11, 2013.
[9]          Y. Tang, W. He, S. Wang, Z. Tao, L. Cheng, One step synthesis of silver nanowires used in preparation of conductive silver paste, Journal of Materials Science: Materials in Electronics, Vol. 25, No. 7, pp. 2929-2933, 2014/07/01, 2014.
[10]        I. X. Yin, J. Zhang, I. S. Zhao, M. L. Mei, Q. Li, C. H. Chu, The Antibacterial Mechanism of Silver Nanoparticles and Its Application in Dentistry, International Journal of Nanomedicine, Vol. 15, pp. 2555-2562, 2020/12/01, 2020.
[11]        P. Prosposito, L. Burratti, I. Venditti, Silver Nanoparticles as Colorimetric Sensors for Water Pollutants, Chemosensors, 8, 2020.
[12]        J. Kim, S. H. Lee, H. Kim, S. H. Kim, C. E. Park, 3D Hollow Framework Silver Nanowire Electrodes for High-Performance Bottom-Contact Organic Transistors, ACS Applied Materials & Interfaces, Vol. 7, No. 26, pp. 14272-14278, 2015/07/08, 2015.
[13]        X. Hong, J. Wen, X. Xiong, Y. Hu, Shape effect on the antibacterial activity of silver nanoparticles synthesized via a microwave-assisted method, Environmental Science and Pollution Research, Vol. 23, No. 5, pp. 4489-4497, 2016/03/01, 2016.
[14]        M. Halder, A. K. Meikap, Influence on loading terbium manganate on optical, thermal and electrical properties of polyvinyl alcohol nanocomposite films, Journal of Materials Science: Materials in Electronics, Vol. 30, No. 5, pp. 4792-4806, 2019/03/01, 2019.
[15]        S. Singh, A. Bharti, V. K. Meena, Structural, thermal, zeta potential and electrical properties of disaccharide reduced silver nanoparticles, Journal of Materials Science: Materials in Electronics, Vol. 25, No. 9, pp. 3747-3752, 2014/09/01, 2014.
[16]        B. N. Khlebtsov, V. A. Khanadeev, I. L. Maksimova, G. S. Terentyuk, N. G. Khlebtsov, Silver nanocubes and gold nanocages: Fabrication and optical and photothermal properties, Nanotechnologies in Russia, Vol. 5, No. 7, pp. 454-468, 2010/08/01, 2010.
[17]        M. Asoro, J. Damiano, P. J. Ferreira, Size Effects on the Melting Temperature of Silver Nanoparticles: In-Situ TEM Observations, Microscopy and Microanalysis, Vol. 15, No. S2, pp. 706-707, 2009.
[18]        M. A. Asoro, D. Kovar, J. Damiano, P. J. Ferreira, Scale Effects on the Melting Behavior of Silver Nanoparticles, Microscopy and Microanalysis, Vol. 16, No. S2, pp. 1802-1803, 2010.
[19]        A. D. Kirshenbaum, J. A. Cahill, A. V. Grosse, The density of liquid silver from its melting point to its normal boiling point 2450°K, Journal of Inorganic and Nuclear Chemistry, Vol. 24, No. 3, pp. 333-336, 1962/03/01/, 1962.
[20]        G. L. Allen, R. A. Bayles, W. W. Gile, W. A. Jesser, Small particle melting of pure metals, Thin Solid Films, Vol. 144, No. 2, pp. 297-308, 1986/11/15/, 1986.
[21]        Q. S. Mei, K. Lu, Melting and superheating of crystalline solids: From bulk to nanocrystals, Progress in Materials Science, Vol. 52, No. 8, pp. 1175-1262, 2007/11/01/, 2007.
[22]        K. Kang, S. Qin, C. Wang, Size-dependent melting: Numerical calculations of the phonon spectrum, Physica E: Low-dimensional Systems and Nanostructures, Vol. 41, No. 5, pp. 817-821, 2009/03/01/, 2009.
[23]        O. A. Yeshchenko, I. M. Dmitruk, A. A. Alexeenko, A. V. Kotko, Surface plasmon as a probe for melting of silver nanoparticles, Nanotechnology, Vol. 21, No. 4, pp. 045203, 2009/12/10, 2010.
[24]        F. G. Shi, Size dependent thermal vibrations and melting in nanocrystals, Journal of Materials Research, Vol. 9, No. 5, pp. 1307-1313, 1994/05/01, 1994.
[25]        K. J. Hanszen, Theoretische Untersuchungen über den Schmelzpunkt kleiner Kügelchen, Zeitschrift für Physik, Vol. 157, No. 5, pp. 523-553, 1960/10/01, 1960.
[26]        K. K. Nanda, S. N. Sahu, S. N. Behera, Liquid-drop model for the size-dependent melting of low-dimensional systems, Physical Review A, Vol. 66, No. 1, pp. 013208, 07/29/, 2002.
[27]        A. P. Chernyshev, Effect of nanoparticle size on the onset temperature of surface melting, Materials Letters, Vol. 63, No. 17, pp. 1525-1527, 2009/07/15/, 2009.
[28]        S. Alavi, 2020, Molecular simulations: fundamentals and practice, John Wiley & Sons,
[29]        H. A. Alarifi, M. Atiş, C. Özdoğan, A. Hu, M. Yavuz, Y. Zhou, Determination of Complete Melting and Surface Premelting Points of Silver Nanoparticles by Molecular Dynamics Simulation, The Journal of Physical Chemistry C, Vol. 117, No. 23, pp. 12289-12298, 2013/06/13, 2013.
[30]        Z. Qiao, H. Feng, J. Zhou, Molecular dynamics simulations on the melting of gold nanoparticles, Phase Transitions, Vol. 87, No. 1, pp. 59-70, 2014/01/02, 2014.
[31]        J. Cui, L. Yang, Y. Wang, Molecular Dynamics Simulation Study of the Melting of Silver Nanoparticles, Integrated Ferroelectrics, Vol. 145, No. 1, pp. 1-9, 2013/01/01, 2013.
[32]        Z. Ahadi, M. Shadman Lakmehsari, S. Kumar Singh, J. Davoodi, Stability and thermal behavior of molybdenum disulfide nanotubes: Nonequilibrium molecular dynamics simulation using REBO potential, Journal of Applied Physics, Vol. 122, No. 22, pp. 224303, 2017.
[33]        B. Azizi, S. Rezaee, M. J. Hadianfard, K. H. Dehnou, A comprehensive study on the mechanical properties and failure mechanisms of graphyne nanotubes (GNTs) in different phases, Computational Materials Science, Vol. 182, pp. 109794, 2020/09/01/, 2020.
[34]        M. Kohestanian, Z. Sohbatzadeh, S. Rezaee, Mechanical properties of continuous fiber composites of cubic silicon carbide (3C-SiC) / different types of carbon nanotubes (SWCNTs, RSWCNTs, and MWCNTs): A molecular dynamics simulation, Materials Today Communications, Vol. 23, pp. 100922, 2020/06/01/, 2020.
[35]        R. Momen, R. Rezaee, B. Azizi, S. Rezaee, H. Hou, X. Ji, Evaluation of mechanical properties of multilayer graphyne-based structures as anode materials for lithium-ions batteries, Eur. Phys. J. Plus, Vol. 137, No. 3, //, 2022.
[36]        B. Azizi, M. Shariati, S. S. M. N. Souq, M. Hosseini, Bending and stretching behavior of graphene structures using continuum models calibrated with modal analysis, Applied Mathematical Modelling, Vol. 114, pp. 466-487, 2023/02/01/, 2023.
[37]        M. Shariati, S. S. M. N. Souq, B. Azizi, Surface- and nonlocality-dependent vibrational behavior of graphene using atomistic-modal analysis, International Journal of Mechanical Sciences, Vol. 228, pp. 107471, 2022/08/15/, 2022.
[38]        M. Shariati, B. Azizi, M. Hosseini, M. Shishesaz, On the calibration of size parameters related to non-classical continuum theories using molecular dynamics simulations, International Journal of Engineering Science, Vol. 168, pp. 103544, 2021/11/01/, 2021.
[39]        B. Azizi, M. Hosseini, M. Shariati, On the hybrid atomistic-continuum model for vibrational analysis of α-, β-, and γ-graphyne circular nano-plates, Waves in Random and Complex Media, pp. 1-36, 2022.
[40]        N. Ertekin, S. Rezaee, B. Azizi, Mechanical properties and role of 2D alkynyl carbon monolayers in the progress of lithium-air batteries, Journal of Energy Storage, Vol. 72, pp. 108558, 2023/11/25/, 2023.
[41]        M. Ghoohestani, S. Rezaee, E. Kadivar, M. A. Esmaeilbeig, Reactive-dynamic characteristics of a nanobubble collapse near a solid boundary using molecular dynamic simulation, Physics of Fluids, Vol. 35, No. 2, pp. 022003, 2023.
[42]        M. Ghoohestani, S. Rezaee, E. Kadivar, O. el Moctar, Thermodynamic effects on nanobubble's collapse-induced erosion using molecular dynamic simulation, Physics of Fluids, Vol. 35, No. 7, pp. 073319, 2023.
[43]        H. Araghi, S. Rezaee, Z. Zabihi, Ionic conductivity of oxygen in BaTiO3, Ba0.9A0.1TiO3-δ (A: Li+, Na+, Ca2+), and BaTi0.9B0.1O3-δ (B: V3+, Cr3+, Si4+) crystals with cubic perovskite structure as cathode in fuel cell: A molecular dynamics study, Journal of Solid State Chemistry, Vol. 258, pp. 640-646, 2018/02/01/, 2018.
[44]        N. Ertekin, S. Rezaee, Lithium-Doped Barium Titanate as Advanced Cells of ReRAMs Technology, Journal of Electronic Materials, Vol. 52, No. 2, pp. 1575-1589, 2023/02/01, 2023.
[45]        N. Ertekin, S. Rezaee, Effect of anion and cation vacancies pairs in conduct of the Ba1−3xTiO31−x and BaTi(1−3x2)O3(1−x) (x = 0.0033) as a memristor, Materials Today Communications, Vol. 31, pp. 103333, 2022/06/01/, 2022.
[46]        N. Ashcroft, N. Mermin, Solid State Physics, Holt, Rinehart and Winston, New York, Vol. 2005, pp. 403, 1976.
[47]        S. M. Foiles, M. I. Baskes, M. S. Daw, Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys, Physical Review B, Vol. 33, No. 12, pp. 7983-7991, 06/15/, 1986.
[48]        M. M. Blazhynska, A. Kyrychenko, O. N. Kalugin, Molecular dynamics simulation of the size-dependent morphological stability of cubic shape silver nanoparticles, Molecular Simulation, Vol. 44, No. 12, pp. 981-991, 2018/08/13, 2018.
[49]        Y. Dong, Y. Xie, L. Hu, C. Xu, W. Guo, G. Pan, Q. Wang, F. Qian, J. Sun, Graphene-assisted preparation of large-scale single-crystal Ag(111) nanoparticle arrays for surface-enhanced Raman scattering, Nanotechnology, Vol. 32, No. 2, pp. 025301, 2020/10/12, 2021.
[50]        M. S. Daw, M. I. Baskes, Semiempirical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals, Physical Review Letters, Vol. 50, No. 17, pp. 1285-1288, 04/25/, 1983.
[51]        M. S. Daw, M. I. Baskes, Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals, Physical Review B, Vol. 29, No. 12, pp. 6443-6453, 06/15/, 1984.
[52]        V. G. Grigoryan, D. Alamanova, M. Springborg, Structure and energetics of CuN clusters with (2 ≤ N ≤ 150) : An embedded-atom-method study, Physical Review B, Vol. 73, No. 11, pp. 115415, 03/15/, 2006.
[53]        S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, Journal of Computational Physics, Vol. 117, No. 1, pp. 1-19, 1995/03/01/, 1995.
[54]        A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool, Modelling and Simulation in Materials Science and Engineering, Vol. 18, No. 1, pp. 015012, 2009/12/15, 2010.
[55]        W. C. Swope, H. C. Andersen, P. H. Berens, K. R. Wilson, A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters, The Journal of Chemical Physics, Vol. 76, No. 1, pp. 637-649, 1982.
[56]        S. Rezaee, H. Araghi, H. Noshad, Z. Zabihi, Physical characteristics of fluorine-doped lithium oxide as advanced material for solid-electrolyte-interphase applications of lithium–air batteries, The European Physical Journal Plus, Vol. 137, No. 10, pp. 1194, 2022/10/29, 2022.
[57]        S. Rezaee, H. Araghi, H. Noshad, Z. Zabihi, Physical characteristics of nickel thin-films and nickel thin-film foams as Li-air batteries anode and cathode current collectors, Journal of Molecular Liquids, Vol. 383, pp. 122171, 2023/08/01/, 2023.
[58]        M. W. Zemansky, R. Dittman, Heat and thermodynamics: an intermediate textbook, (No Title), 1968.
[59]        D. Halliday, R. Resnick, J. Walker, 2013, Fundamentals of physics, John Wiley & Sons,
[60]        W. Luo, W. Hu, S. Xiao, Size Effect on the Thermodynamic Properties of Silver Nanoparticles, The Journal of Physical Chemistry C, Vol. 112, No. 7, pp. 2359-2369, 2008/02/01, 2008.
[61]        R. Amils, C. Ellis-Evans, H. Hinghofer-Szalkay, 2007, Life in extreme environments, Springer,
[62]        F. Robb, G. Antranikian, D. Grogan, A. Driessen, 2007, Thermophiles: biology and technology at high temperatures, CRC Press,
[63]        P. Pourali, M. Baserisalehi, S. Afsharnezhad, J. Behravan, R. Ganjali, N. Bahador, S. Arabzadeh, The effect of temperature on antibacterial activity of biosynthesized silver nanoparticles, BioMetals, Vol. 26, No. 1, pp. 189-196, 2013/02/01, 2013.
Volume 54, Issue 3
September 2023
Pages 378-389
  • Receive Date: 10 August 2023
  • Revise Date: 24 August 2023
  • Accept Date: 03 September 2023