[1] S. H. Huang, P. Liu, A. Mokasdar, L. Hou, Additive manufacturing and its societal impact: a literature review, J The International journal of advanced manufacturing technology, Vol. 67, pp. 1191-1203, 2013.
[2] S. Dhinesh, P. S. Arun, K. K. Senthil, A. Megalingam, Study on flexural and tensile behavior of PLA, ABS and PLA-ABS materials, J Materials Today: Proceedings, Vol. 45, pp. 1175-1180, 2021.
[3] S. Mollaei, M. Babaei, K. Asemi, Torsional buckling of functionally graded graphene reinforced composite laminated cylindrical panel, J Archive of Applied Mechanics, Vol. 93, No. 2, pp. 427-435, 2023.
[4] M. Khatoonabadi, M. Jafari, F. Kiarasi, M. Hosseini, M. Babaei, K. Asemi, Shear buckling response of FG porous annular sector plate reinforced by graphene platelet subjected to different shear loads, J Journal of Computational Applied Mechanics, Vol. 54, No. 1, pp. 68-86, 2023.
[5] F. Kiarasi, M. Babaei, K. Asemi, R. Dimitri, F. Tornabene, Free vibration analysis of thick annular functionally graded plate integrated with piezo-magneto-electro-elastic layers in a hygrothermal environment, J Applied Sciences, Vol. 12, No. 20, pp. 10682, 2022.
[6] M. babaei, F. Kiarasi, M. S. Tehrani, A. Hamzei, E. Mohtarami, K. Asemi, Three dimensional free vibration analysis of functionally graded graphene reinforced composite laminated cylindrical panel, Part L: Journal of Materials: Design and Applications. 2022;236(8):1501-1514, Vol. 236, No. 8, pp. 1501-1514, 2022.
[7] F. Kiarasi, A. Asadi, M. Babaei, K. Asemi, M. Hosseini, Dynamic analysis of functionally graded carbon nanotube (FGCNT) reinforced composite beam resting on viscoelastic foundation subjected to impulsive loading, Journal of Computational Applied Mechanics, Vol. 53, No. 1, pp. 1-23, 2022.
[8] M. Babaei, F. Kiarasi, S. M. Hossaeini Marashi, M. Ebadati, F. Masoumi, K. Asemi, Stress wave propagation and natural frequency analysis of functionally graded graphene platelet-reinforced porous joined conical–cylindrical–conical shell, Waves in Random and Complex Media, pp. 1-33.
[9] F. Kiarasi, M. Babaei, P. Sarvi, K. Asemi, M. Hosseini, M. Omidi Bidgoli, A review on functionally graded porous structures reinforced by graphene platelets, Journal of Computational Applied Mechanics, Vol. 52, No. 4, pp. 731-750, 2021.
[10] T. Li, L. Wang, Bending behavior of sandwich composite structures with tunable 3D-printed core materials, Composite Structures, Vol. 175, pp. 46-57, 2017.
[11] C. Peng, K. Fox, M. Qian, H. Nguyen-Xuan, P. Tran, 3D printed sandwich beams with bioinspired cores: Mechanical performance and modelling, Thin-Walled Structures, Vol. 161, pp. 107471, 2021.
[12] Z. Liu, H. Chen, S. Xing, Mechanical performances of metal-polymer sandwich structures with 3D-printed lattice cores subjected to bending load, Archives of Civil and Mechanical Engineering, Vol. 20, pp. 1-17, 2020.
[13] G. D. Goh, S. J. C. Neo, V. Dikshit, W. Y. Yeong, Quasi-static indentation and sound-absorbing properties of 3D printed sandwich core panels, Journal of Sandwich Structures & Materials, Vol. 24, No. 2, pp. 1206-1225, 2022.
[14] C. Lu, M. Qi, S. Islam, P. Chen, S. Gao, Y. Xu, X. Yang, Mechanical performance of 3D-printing plastic honeycomb sandwich structure, International Journal of Precision Engineering and Manufacturing-Green Technology, Vol. 5, pp. 47-54, 2018.
[15] S. Ghannadpour, M. Mahmoudi, K. H. Nedjad, Structural behavior of 3D-printed sandwich beams with strut-based lattice core: Experimental and numerical study, Composite Structures, Vol. 281, pp. 115113, 2022.
[16] İ. K. Türkoğlu, H. Kasım, M. Yazıcı, Experimental investigation of 3D-printed auxetic core sandwich structures under quasi-static and dynamic compression and bending loads, International Journal of Protective Structures, Vol. 14, No. 1, pp. 63-86, 2023.
[17] X. Zhou, J. Li, C. Qu, W. Bu, Z. Liu, Y. Fan, G. Bao, Bending behavior of hybrid sandwich composite structures containing 3D printed PLA lattice cores and magnesium alloy face sheets, The Journal of Adhesion, Vol. 98, No. 11, pp. 1713-1731, 2022.
[18] N. K. Choudhry, S. R. Bankar, B. Panda, H. Singh, Experimental and numerical analysis of the bending behavior of 3D printed modified auxetic sandwich structures, Materials Today: Proceedings, Vol. 56, pp. 1356-1363, 2022.
[19] M. Ali, S. Batai, Bending behavior of sandwich composite structures of 3D-printed materials, in Proceeding of, Springer, pp. 281-287.
[20] M. Gunasegeran, P. Edwin Sudhagar, Free and forced vibration analysis of 3D printed bioinspired sandwich beam using HSDT: Numerical and experimental study, Polymer Composites, Vol. 43, No. 6, pp. 3659-3677, 2022.
[21] S. Hou, T. Li, Z. Jia, L. Wang, Mechanical properties of sandwich composites with 3d-printed auxetic and non-auxetic lattice cores under low velocity impact, Materials & Design, Vol. 160, pp. 1305-1321, 2018.
[22] R. Hedayati, A. Yousefi, M. Bodaghi, Sandwich structures with repairable cores based on truncated cube cells, Composites Part B: Engineering, Vol. 243, pp. 110124, 2022.
[23] A. I. Indreș, D. M. Constantinescu, O. A. Mocian, Bending behavior of 3D printed sandwich beams with different core topologies, Material Design & Processing Communications, Vol. 3, No. 4, pp. e252, 2021.
[24] Y. Cao, X. Geng, H. Han, Y. Lu, J. Wang, C. Zhao, Experimental and numerical investigation on the buckling of 3D printed sandwich structure with lattice core, Journal of Sandwich Structures & Materials, Vol. 24, No. 6, pp. 1923-1940, 2022.
[25] S.-Y. Jhou, C.-C. Hsu, J.-C. Yeh, The dynamic impact response of 3D-printed polymeric sandwich structures with lattice cores: Numerical and experimental investigation, Polymers, Vol. 13, No. 22, pp. 4032, 2021.
[26] Z. Guo, G. Hu, J. Jiang, L. Yu, X. Li, J. Liang, Theoretical and experimental study of the vibration dynamics of a 3D-printed sandwich beam with an hourglass lattice truss core, Frontiers in Mechanical Engineering, Vol. 7, pp. 651998, 2021.
[27] Y. Solyaev, A. Babaytsev, A. Ustenko, A. Ripetskiy, A. Volkov, Static and dynamic response of sandwich beams with lattice and pantographic cores, Journal of Sandwich Structures & Materials, Vol. 24, No. 2, pp. 1076-1098, 2022.
[28] Y. Duan, B. Du, X. Shi, B. Hou, Y. Li, Quasi-static and dynamic compressive properties and deformation mechanisms of 3D printed polymeric cellular structures with Kelvin cells, International Journal of Impact Engineering, Vol. 132, pp. 103303, 2019.
[29] G. Ye, H. Bi, L. Chen, Y. Hu, Compression and energy absorption performances of 3D printed Polylactic acid lattice core sandwich structures, 3D Printing and additive manufacturing, Vol. 6, No. 6, pp. 333-343, 2019.
[30] S. Chahardoli, Flexural behavior of sandwich panels with 3D printed cellular cores and aluminum face sheets under quasi-static loading, Journal of Sandwich Structures & Materials, Vol. 25, No. 2, pp. 232-250, 2023.
[31] H. TEWANI, D. BONTHU, H. BHARATH, M. DODDAMANI, P. PRABHAKAR, Dynamic Impact Resistance of Composite Sandwich Panels with 3-D Printed Polymer Syntactic Foam Cores, in Proceeding of.
[32] B. D. de Castro, F. de Castro Magalhães, J. C. C. Rubio, Numerical analysis of damage mechanisms for 3D-printed sandwich structures using a meshless method, Modelling and Simulation in Materials Science and Engineering, Vol. 30, No. 5, pp. 055003, 2022.
[33] H. Y. Sarvestani, A. Akbarzadeh, A. Mirbolghasemi, K. Hermenean, 3D printed meta-sandwich structures: Failure mechanism, energy absorption and multi-hit capability, Materials & Design, Vol. 160, pp. 179-193, 2018.
[34] H. Y. Sarvestani, A. Akbarzadeh, H. Niknam, K. Hermenean, 3D printed architected polymeric sandwich panels: Energy absorption and structural performance, Composite Structures, Vol. 200, pp. 886-909, 2018.
[35] H. Geramizadeh, S. Dariushi, S. J. Salami, Numerical and experimental investigation for enhancing the energy absorption capacity of the novel three-dimensional printed sandwich structures, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, Vol. 235, No. 7, pp. 1622-1634, 2021.
[36] S. H. Siddique, P. J. Hazell, H. Wang, J. P. Escobedo, A. A. Ameri, Lessons from nature: 3D printed bio-inspired porous structures for impact energy absorption–A review, Additive Manufacturing, pp. 103051, 2022.
[37] C. J. Choudhari, P. S. Thakare, S. K. Sahu, 3D printing of composite sandwich structures for aerospace applications, in: High-performance composite structures: additive manufacturing and processing, Eds., pp. 45-73: Springer, 2021.
[38] Q. Ma, M. Rejab, M. M. Hanon, M. Idris, J. Siregar, 3D-Printed spherical-roof contoured-core (SRCC) composite sandwich structures for aerospace applications, in: High-Performance Composite Structures: Additive Manufacturing and Processing, Eds., pp. 75-91: Springer, 2021.
[39] S. K. Sahu, N. D. Badgayan, S. Samanta, P. Rama Sreekanth, Evaluation of cell parameter variation on energy absorption characteristic of thermoplastic honeycomb sandwich structure, Arabian Journal for Science and Engineering, Vol. 46, pp. 12487-12507, 2021.
[40] D. Wannarong, T. Singhanart, A Review of Sandwich Composite Structures with 3D Printed Honeycomb Cores, Engineering Journal, Vol. 26, No. 6, pp. 27-39, 2022.