Exergy-Economic Optimization of Gasket-Plate Heat Exchangers

Document Type : Research Paper

Authors

Faculty of Engineering, Shohadaye Hoveizeh Campus of Technology, Shahid Chamran University of Ahvaz, Dashte Azadegan, Iran.

Abstract

In this research, using Harris Hawks optimization method, the gasket- plate heat exchangers is studied with an exergy- economic approach. Six parameters of hot fluid inlet temperature, cold fluid inlet temperature, hot fluid mass flow rate, cold fluid mass flow rate, port diameter and the number of plates were selected as design variables. The ratio of hot fluid mass flow rate to cold fluid mass flow rate, λ, is introduced to the analysis of exergy loss. The results showed that using Harris Hawks optimization method, exergy loss and total cost can be reduced by 70% and 81%, respectively. The optimization results showed that minimizing the exergy loss, the efficiency of the gasket- plate heat exchanger increases by 30%. It is also found that for λ>1, with the increase of cold fluid mass flow rate, the exergy loss number decreases and for λ<1, with the increase of cold fluid mass flow rate, the exergy loss number increases.

Keywords

Main Subjects

[1]          M. Chahartaghi, S. E. Alavi, A. J. J. o. C. A. M. Sarreshtehdari, Investigation of energy consumption reduction in multistage compression process and its solutions, Vol. 50, No. 2, pp. 219-227, 2019.
[2]          Y. A. Al-Turki, H. Moria, A. Shawabkeh, S. Pourhedayat, M. Hashemian, H. S. J. C. E. Dizaji, P.-P. Intensification, Thermal, frictional and exergetic analysis of non-parallel configurations for plate heat exchangers, Vol. 161, pp. 108319, 2021.
[3]          V. Kumar, A. K. Tiwari, S. K. J. M. R. E. Ghosh, Exergy analysis of hybrid nanofluids with optimum concentration in a plate heat exchanger, Vol. 5, No. 6, pp. 065022, 2018.
[4]          A. Bejan, 2013, Entropy generation minimization: the method of thermodynamic optimization of finite-size systems and finite-time processes, CRC press,
[5]          A. Bejan, J. Kestin, Entropy generation through heat and fluid flow, 1983.
[6]          J. Hesselgreaves, Rationalisation of second law analysis of heat exchangers, International Journal of Heat and Mass Transfer, Vol. 43, No. 22, pp. 4189-4204, 2000.
[7]          Q. Chen, M. Wang, N. Pan, Z.-Y. J. E. Guo, Optimization principles for convective heat transfer, Vol. 34, No. 9, pp. 1199-1206, 2009.
[8]          L. J. E. c. Ghodoossi, management, Entropy generation rate in uniform heat generating area cooled by conducting paths: criterion for rating the performance of constructal designs, Vol. 45, No. 18-19, pp. 2951-2969, 2004.
[9]          W. Escher, B. Michel, D. J. I. J. o. H. Poulikakos, M. Transfer, Efficiency of optimized bifurcating tree-like and parallel microchannel networks in the cooling of electronics, Vol. 52, No. 5-6, pp. 1421-1430, 2009.
[10]        X. Liu, J. Meng, Z. Guo, Entropy generation extremum and entransy dissipation extremum for heat exchanger optimization, Chinese Science Bulletin, Vol. 54, No. 6, pp. 943-947, 2009.
[11]        R. K. Shah, T. J. J. H. T. Skiepko, Entropy generation extrema and their relationship with heat exchanger effectiveness—Number of transfer unit behavior for complex flow arrangements, Vol. 126, No. 6, pp. 994-1002, 2004.
[12]        B. Gao, Q. Bi, Z. Nie, J. J. E. t. Wu, f. Science, Experimental study of effects of baffle helix angle on shell-side performance of shell-and-tube heat exchangers with discontinuous helical baffles, Vol. 68, pp. 48-57, 2015.
[13]        M. A. Jamil, Z. U. Din, T. S. Goraya, H. Yaqoob, S. M. J. E. C. Zubair, Management, Thermal-hydraulic characteristics of gasketed plate heat exchangers as a preheater for thermal desalination systems, Vol. 205, pp. 112425, 2020.
[14]        J. Soontarapiromsook, O. Mahian, A. S. Dalkilic, S. J. E. T. Wongwises, F. Science, Effect of surface roughness on the condensation of R-134a in vertical chevron gasketed plate heat exchangers, Vol. 91, pp. 54-63, 2018.
[15]        A. L. Nahes, N. R. Martins, M. J. Bagajewicz, A. L. J. I. Costa, E. C. Research, Computational study of the use of set trimming for the globally optimal design of gasketed-plate heat exchangers, Vol. 60, No. 4, pp. 1746-1755, 2021.
[16]        D. P SOMAN, V. DT, T. J. I. J. o. C. RADHAKRISHNAN, C. Engineering, Computational Fluid Dynamics Modelling and Analysis of Heat Transfer in Multichannel Dimple Plate Heat Exchanger, 2021.
[17]        B. Kumar, A. Soni, S. J. E. T. Singh, F. Science, Effect of geometrical parameters on the performance of chevron type plate heat exchanger, Vol. 91, pp. 126-133, 2018.
[18]        Y. Zhong, K. Deng, S. Zhao, J. Hu, Y. Zhong, Q. Li, Z. Wu, Z. Lu, Q. J. P. Wen, Experimental and numerical study on hydraulic performance of chevron brazed plate heat exchanger at low Reynolds number, Vol. 8, No. 9, pp. 1076, 2020.
[19]        Y. Guo, F. Wang, M. Jia, S. J. C. E. R. Zhang, Design, Modeling of plate heat exchanger based on sensitivity analysis and model updating, Vol. 138, pp. 418-432, 2018.
[20]        H. Hajabdollahi, M. Naderi, S. J. A. T. E. Adimi, A comparative study on the shell and tube and gasket-plate heat exchangers: The economic viewpoint, Vol. 92, pp. 271-282, 2016.
[21]        H. S. Dizaji, S. Jafarmadar, M. J. E. Hashemian, The effect of flow, thermodynamic and geometrical characteristics on exergy loss in shell and coiled tube heat exchangers, Vol. 91, pp. 678-684, 2015.
[22]        M. Mehregan, S. E. J. E. E. Alavi, Systems, Thermal and economic optimization of an intercooler of three-stage compressor, Vol. 9, No. 3, pp. 261-278, 2021.
[23]        A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, H. J. F. g. c. s. Chen, Harris hawks optimization: Algorithm and applications, Vol. 97, pp. 849-872, 2019.
[24]        S. Kakac, H. Liu, A. Pramuanjaroenkij, 2012, Heat exchangers: selection, rating, and thermal design, CRC press,
Volume 54, Issue 2
June 2023
Pages 254-267
  • Receive Date: 15 February 2023
  • Revise Date: 02 March 2023
  • Accept Date: 08 March 2023