Optimum design of a micro-positioning compliant ‎mechanism based ‎on neural network ‎metamodeling

Document Type : Research Paper

Authors

School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran.

Abstract

This paper presents a comprehensive investigation of the optimization process of a ‎‎compliant nano-‎‎positioning mechanism based on a high-accuracy metamodel. Within ‎this ‎study, analytical approach, ‎finite ‎element analysis (FEA), and deep neural network ‎‎(DNN) ‎are integrated in order to achieve the ‎optimum ‎design of a parallel 2-degree-of-‎freedom‎ ‎compliant positioner while taking a broad range of ‎factors into ‎account. First, a ‎linear ‎regression analysis is performed on the primary finite element model ‎as a sensitivity ‎‎analysis. ‎Then an analytical model is established to express one of the objective ‎‎functions of ‎design, ‎namely the mechanism working range, as a function of ‎characteristic features: the ‎‎mechanism stiffness ‎and displacement amplification ratio (λ). ‎In the optimization ‎procedure, a single ‎objective constrained ‎particle swarm optimization ‎‎(SOCPSO) algorithm ‎acts on the metamodel to ‎maximize the resonant ‎frequency and ‎provide the minimum ‎acceptable working range. The proposed ‎optimization guideline is ‎‎established for seven ‎different desired working ranges and succeeded in ‎predicting the ‎objective function ‎with ‎an error of less than 3%. The findings provide insights into the ‎‎design and geometric ‎optimization of the ‎mechanical structures. Furthermore, it will be ‎employed as a ‎guideline ‎for implementing DNN for ‎metamodeling in other engineering ‎problems.‎

Keywords

[1]          W. Dong, F. Chen, F. Gao, M. Yang, L. Sun, Z. Du, J. Tang, D. Zhang, Development and analysis of a bridge-lever-type displacement amplifier based on hybrid flexure hinges, Precision Engineering, Vol. 54, pp. 171-181, 2018.
[2]          S. Iqbal, A. Malik, A review on MEMS based micro displacement amplification mechanisms, Sensors and Actuators A: Physical, Vol. 300, pp. 111666, 2019.
[3]          J. Wei, S. Fatikow, X. Zhang, O. C. Haenssler, Design and experimental evaluation of a compliant mechanism-based stepping-motion actuator with multi-mode, Smart Materials and Structures, Vol. 27, No. 10, pp. 105014, 2018.
[4]          M. Ling, X. Zhang, Coupled dynamic modeling of piezo-actuated compliant mechanisms subjected to external loads, Mechanism and Machine Theory, Vol. 160, pp. 104283, 2021.
[5]          P. Gräser, S. Linß, F. Harfensteller, M. Torres, L. Zentner, R. Theska, High-precision and large-stroke XY micropositioning stage based on serially arranged compliant mechanisms with flexure hinges, Precision Engineering, 2021.
[6]          W.-L. Zhu, Z. Zhu, P. Guo, B.-F. Ju, A novel hybrid actuation mechanism based XY nanopositioning stage with totally decoupled kinematics, Mechanical Systems and Signal Processing, Vol. 99, pp. 747-759, 2018.
[7]          L. L. Howell, Compliant mechanisms,  in: 21st century kinematics, Eds., pp. 189-216: Springer, 2013.
[8]          L. Zentner, S. Linß, 2019, Compliant systems: Mechanics of elastically deformable mechanisms, actuators and sensors, Walter de Gruyter GmbH & Co KG,
[9]          M. Ling, J. Cao, M. Zeng, J. Lin, D. J. Inman, Enhanced mathematical modeling of the displacement amplification ratio for piezoelectric compliant mechanisms, Smart Materials and Structures, Vol. 25, No. 7, pp. 075022, 2016.
[10]        X. Xi, T. Clancy, X. Wu, Y. Sun, X. Liu, A MEMS XY-stage integrating compliant mechanism for nanopositioning at sub-nanometer resolution, Journal of Micromechanics and Microengineering, Vol. 26, No. 2, pp. 025014, 2016.
[11]        Y. K. Yong, S. S. Aphale, S. R. Moheimani, Design, identification, and control of a flexure-based XY stage for fast nanoscale positioning, IEEE Transactions on Nanotechnology, Vol. 8, No. 1, pp. 46-54, 2008.
[12]        P. Wang, Q. Xu, Design and testing of a flexure-based constant-force stage for biological cell micromanipulation, IEEE Transactions on automation science and engineering, Vol. 15, No. 3, pp. 1114-1126, 2017.
[13]        T. K. Das, B. Shirinzadeh, M. Ghafarian, A. Al-Jodah, Design, analysis, and experimental investigation of a single-stage and low parasitic motion piezoelectric actuated microgripper, Smart Materials and Structures, Vol. 29, No. 4, pp. 045028, 2020.
[14]        Y.-l. Yang, Y.-d. Wei, J.-q. Lou, G. Tian, X.-w. Zhao, L. Fu, A new piezo-driven microgripper based on the double-rocker mechanism, Smart Materials and Structures, Vol. 24, No. 7, pp. 075031, 2015.
[15]        T. Jin, S. Luo, Y. Le, J. Wu, L. Lei, B. Zhang, Design and analysis of a low crosstalk error nested structure two-dimensional micro-displacement stage, Advances in Mechanical Engineering, Vol. 13, No. 4, pp. 16878140211014061, 2021.
[16]        Z. Wu, Q. Xu, Design, optimization and testing of a compact XY parallel nanopositioning stage with stacked structure, Mechanism and Machine Theory, Vol. 126, pp. 171-188, 2018.
[17]        Q. Xu, Design and development of a compact flexure-based $ XY $ precision positioning system with centimeter range, IEEE Transactions on Industrial Electronics, Vol. 61, No. 2, pp. 893-903, 2013.
[18]        C.-X. Li, G.-Y. Gu, M.-J. Yang, L.-M. Zhu, Design, analysis and testing of a parallel-kinematic high-bandwidth XY nanopositioning stage, Review of Scientific instruments, Vol. 84, No. 12, pp. 125111, 2013.
[19]        S. P. Wadikhaye, Y. K. Yong, S. R. Moheimani, A novel serial-kinematic AFM scanner: design and characterization, in Proceeding of, IEEE, pp. 50-55.
[20]        B. J. Kenton, K. K. Leang, Design and control of a three-axis serial-kinematic high-bandwidth nanopositioner, IEEE/ASME Transactions on Mechatronics, Vol. 17, No. 2, pp. 356-369, 2011.
[21]        H. Tang, Y. Li, J. Huang, Design and analysis of a dual-mode driven parallel XY micromanipulator for micro/nanomanipulations, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 226, No. 12, pp. 3043-3057, 2012.
[22]        N. Hosseini, A. Nievergelt, J. Adams, V. Stavrov, G. Fantner, A monolithic MEMS position sensor for closed-loop high-speed atomic force microscopy, Nanotechnology, Vol. 27, No. 13, pp. 135705, 2016.
[23]        Q. Yao, J. Dong, P. M. Ferreira, Design, analysis, fabrication and testing of a parallel-kinematic micropositioning XY stage, International Journal of Machine Tools and Manufacture, Vol. 47, No. 6, pp. 946-961, 2007.
[24]        F. Wang, X. Zhao, Z. Huo, B. Shi, C. Liang, Y. Tian, D. Zhang, A 2-DOF nano-positioning scanner with novel compound decoupling-guiding mechanism, Mechanism and Machine Theory, Vol. 155, pp. 104066, 2021.
[25]        Y. Li, Q. Xu, A novel piezoactuated XY stage with parallel, decoupled, and stacked flexure structure for micro-/nanopositioning, IEEE Transactions on Industrial Electronics, Vol. 58, No. 8, pp. 3601-3615, 2010.
[26]        H.-J. Lee, S. Woo, J. Park, J.-H. Jeong, M. Kim, J. Ryu, D.-G. Gweon, Y.-M. Choi, Compact compliant parallel XY nano-positioning stage with high dynamic performance, small crosstalk, and small yaw motion, Microsystem Technologies, Vol. 24, No. 6, pp. 2653-2662, 2018.
[27]        Y. Tian, Y. Ma, F. Wang, K. Lu, D. Zhang, A novel XYZ micro/nano positioner with an amplifier based on L-shape levers and half-bridge structure, Sensors and Actuators A: Physical, Vol. 302, pp. 111777, 2020.
[28]        Y. Qin, B. Shirinzadeh, Y. Tian, D. Zhang, Design issues in a decoupled XY stage: Static and dynamics modeling, hysteresis compensation, and tracking control, Sensors and Actuators A: Physical, Vol. 194, pp. 95-105, 2013.
[29]        J. Ferreiro-Cabello, E. Fraile-Garcia, E. M. de Pison Ascacibar, F. Martinez-de-Pison, Metamodel-based design optimization of structural one-way slabs based on deep learning neural networks to reduce environmental impact, Engineering Structures, Vol. 155, pp. 91-101, 2018.
[30]        T. T. Truong, J. Lee, T. Nguyen-Thoi, Multi-objective optimization of multi-directional functionally graded beams using an effective deep feedforward neural network-SMPSO algorithm, Structural and Multidisciplinary Optimization, Vol. 63, No. 6, pp. 2889-2918, 2021.
[31]        D. Bielecki, D. Patel, R. Rai, G. F. Dargush, Multi-stage deep neural network accelerated topology optimization, Structural and Multidisciplinary Optimization, Vol. 64, No. 6, pp. 3473-3487, 2021.
[32]        C. Qian, W. Ye, Accelerating gradient-based topology optimization design with dual-model artificial neural networks, Structural and Multidisciplinary Optimization, Vol. 63, No. 4, pp. 1687-1707, 2021.
[33]        J. Kennedy, R. Eberhart, Particle swarm optimization, in Proceeding of, IEEE, pp. 1942-1948.
[34]        J. C. Bansal, P. Singh, M. Saraswat, A. Verma, S. S. Jadon, A. Abraham, Inertia weight strategies in particle swarm optimization, in Proceeding of, IEEE, pp. 633-640.
[35]        Z. Zhao, Z. Chen, S. Liu, Hybrid FEM-ANN-PSO Method To Optimize The Structural Parameters Of Wafer-Level Chip Scale Package (WLCSP) For High Reliability, in Proceeding of, IEEE, pp. 1-5.
[36]        H.-W. Ma, S.-M. Yao, L.-Q. Wang, Z. Zhong, Analysis of the displacement amplification ratio of bridge-type flexure hinge, Sensors and Actuators A: Physical, Vol. 132, No. 2, pp. 730-736, 2006.
[37]        Y. Koseki, T. Tanikawa, N. Koyachi, T. Arai, Kinematic analysis of a translational 3-dof micro-parallel mechanism using the matrix method, Advanced Robotics, Vol. 16, No. 3, pp. 251-264, 2002.
[38]        H.-H. Pham, I.-M. Chen, Stiffness modeling of flexure parallel mechanism, Precision Engineering, Vol. 29, No. 4, pp. 467-478, 2005.
[39]        V. Nair, G. E. Hinton, Rectified linear units improve restricted boltzmann machines, in Proceeding of.
[40]        D.-A. Clevert, T. Unterthiner, S. Hochreiter, Fast and accurate deep network learning by exponential linear units (elus), arXiv preprint arXiv:1511.07289, 2015.
Volume 54, Issue 2
June 2023
Pages 236-253
  • Receive Date: 22 November 2022
  • Revise Date: 10 February 2023
  • Accept Date: 11 February 2023