[1] T. Hayat, M. Mustafa, Influence of thermal radiation on the unsteady mixed convection flow of a Jeffrey fluid over a stretching sheet, Zeitschrift für Naturforschung A, Vol. 65, No. 8-9, pp. 711-719, 2010.
[2] K. Das, Influence of slip and heat transfer on MHD peristaltic flow of a Jeffrey fluid in an inclined asymmetric porous channel, Indian Journal of Mathematics, Vol. 54, No. 1, pp. 19-45, 2012.
[3] M. Qasim, Heat and mass transfer in a Jeffrey fluid over a stretching sheet with heat source/sink, Alexandria Engineering Journal, Vol. 52, No. 4, pp. 571-575, 2013.
[4] T. Hayat, N. Ahmad, N. Ali, Effects of an endoscope and magnetic field on the peristalsis involving Jeffrey fluid, Communications in Nonlinear Science and Numerical Simulation, Vol. 13, No. 8, pp. 1581-1591, 2008.
[5] S. Shehzad, A. Alsaedi, T. Hayat, Influence of thermophoresis and Joule heating on the radiative flow of Jeffrey fluid with mixed convection, Brazilian Journal of Chemical Engineering, Vol. 30, pp. 897-908, 2013.
[6] S. Nallapu, G. Radhakrishnamacharya, Jeffrey fluid flow through porous medium in the presence of magnetic field in narrow tubes, International Journal of Engineering Mathematics, Vol. 2014, 2014.
[7] V. Ramachandra Prasad, S. Abdul Gaffar, E. Keshava Reddy, O. Anwar Bég, S. Krishnaiah, A mathematical study for laminar boundary‐layer flow, heat, and mass transfer of a Jeffrey non‐Newtonian fluid past a vertical porous plate, Heat Transfer—Asian Research, Vol. 44, No. 3, pp. 189-210, 2015.
[8] K. Das, L. Zheng, Melting effects on the stagnation point flow of a Jeffrey fluid in the presence of magnetic field, Heat Transfer Research, Vol. 44, No. 6, 2013.
[9] N. Akbar, Z. H. Khan, S. Nadeem, Influence of magnetic field and slip on Jeffrey fluid in a ciliated symmetric channel with metachronal wave pattern, Journal of Applied Fluid Mechanics, Vol. 9, No. 2, pp. 565-572, 2016.
[10] M. Bhatti, M. A. Abbas, Simultaneous effects of slip and MHD on peristaltic blood flow of Jeffrey fluid model through a porous medium, Alexandria Engineering Journal, Vol. 55, No. 2, pp. 1017-1023, 2016.
[11] N. Sandeep, C. Sulochana, Momentum and heat transfer behaviour of Jeffrey, Maxwell and Oldroyd-B nanofluids past a stretching surface with non-uniform heat source/sink, Ain Shams Engineering Journal, Vol. 9, No. 4, pp. 517-524, 2018.
[12] N. Sandeep, C. Sulochana, I. L. Animasaun, Stagnation-point flow of a Jeffrey nanofluid over a stretching surface with induced magnetic field and chemical reaction, in Proceeding of, Trans Tech Publ, pp. 93-111.
[13] T. Hayat, T. Muhammad, S. A. Shehzad, A. Alsaedi, Three-dimensional flow of Jeffrey nanofluid with a new mass flux condition, Journal of Aerospace Engineering, Vol. 29, No. 2, pp. 04015054, 2016.
[14] S. A. Shehzad, T. Hayat, A. Alsaedi, M. A. Obid, Nonlinear thermal radiation in three-dimensional flow of Jeffrey nanofluid: a model for solar energy, Applied Mathematics and Computation, Vol. 248, pp. 273-286, 2014.
[15] T. Hayat, M. Imtiaz, A. Alsaedi, Magnetohydrodynamic stagnation point flow of a Jeffrey nanofluid with Newtonian heating, Journal of aerospace engineering, Vol. 29, No. 3, pp. 04015063, 2016.
[16] N. Dalir, M. Dehsara, S. S. Nourazar, Entropy analysis for magnetohydrodynamic flow and heat transfer of a Jeffrey nanofluid over a stretching sheet, Energy, Vol. 79, pp. 351-362, 2015.
[17] R. V. Prasad, B. N. Reddy, Radiation and mass transfer effects on an unsteady MHD free convection flow past a heated vertical plate in a porous medium with viscous dissipation, Theoretical and Applied Mechanics, Vol. 34, No. 2, pp. 135-160, 2007.
[18] R. Dhanai, P. Rana, L. Kumar, MHD mixed convection nanofluid flow and heat transfer over an inclined cylinder due to velocity and thermal slip effects: Buongiorno's model, Powder Technology, Vol. 288, pp. 140-150, 2016.
[19] M. Sheikholeslami, D. Ganji, Nanofluid hydrothermal behavior in existence of Lorentz forces considering Joule heating effect, Journal of Molecular Liquids, Vol. 224, pp. 526-537, 2016.
[20] T. Hayat, S. Qayyum, A. Alsaedi, B. Ahmad, Magnetohydrodynamic (MHD) nonlinear convective flow of Walters-B nanofluid over a nonlinear stretching sheet with variable thickness, International Journal of Heat and Mass Transfer, Vol. 110, pp. 506-514, 2017.
[21] M. Waqas, M. Farooq, M. I. Khan, A. Alsaedi, T. Hayat, T. Yasmeen, Magnetohydrodynamic (MHD) mixed convection flow of micropolar liquid due to nonlinear stretched sheet with convective condition, International Journal of Heat and Mass Transfer, Vol. 102, pp. 766-772, 2016.
[22] A. Alsaedi, M. I. Khan, M. Farooq, N. Gull, T. Hayat, Magnetohydrodynamic (MHD) stratified bioconvective flow of nanofluid due to gyrotactic microorganisms, Advanced Powder Technology, Vol. 28, No. 1, pp. 288-298, 2017.
[23] M. I. Khan, M. Waqas, T. Hayat, M. I. Khan, A. Alsaedi, Behavior of stratification phenomenon in flow of Maxwell nanomaterial with motile gyrotactic microorganisms in the presence of magnetic field, International Journal of Mechanical Sciences, Vol. 131, pp. 426-434, 2017.
[24] S. Qayyum, T. Hayat, A. Alsaedi, Chemical reaction and heat generation/absorption aspects in MHD nonlinear convective flow of third grade nanofluid over a nonlinear stretching sheet with variable thickness, Results in physics, Vol. 7, pp. 2752-2761, 2017.
[25] M. Kar, S. Sahoo, P. Rath, G. Dash, Heat and mass transfer effects on a dissipative and radiative visco-elastic MHD flow over a stretching porous sheet, Arabian Journal for Science and Engineering, Vol. 39, pp. 3393-3401, 2014.
[26] A. Basiri Parsa, M. Rashidi, T. Hayat, MHD boundary‐layer flow over a stretching surface with internal heat generation or absorption, Heat Transfer—Asian Research, Vol. 42, No. 6, pp. 500-514, 2013.
[27] P. Gupta, A. Gupta, Heat and mass transfer on a stretching sheet with suction or blowing, The Canadian journal of chemical engineering, Vol. 55, No. 6, pp. 744-746, 1977.
[28] S. A. Devi, S. Karthikeyan, P. Hemamalini, Pulsated convective MHD flow with Hall current, heat source and viscous dissipation along a vertical porous plate, Education, Vol. 2002, 1991.
[29] P. Sturdza, 2004, An aerodynamic design method for supersonic natural laminar flow aircraft, stanford university,
[30] G. Murali, A. Paul, N. Babu, Heat and mass transfer effects on an unsteady hydromagnetic free convective flow over an infinite vertical plate embedded in a porous medium with heat absorption, Int. J. Open Problems Compt. Math, Vol. 8, No. 1, 2015.
[31] H. Takhar, P. Ram, S. Singh, Hall effects on heat and mass transfer flow with variable suction and heat generation, Astrophysics and space science, Vol. 191, pp. 101-106, 1992.
[32] J. N. Reddy, 2019, Introduction to the finite element method, McGraw-Hill Education,
[33] N. Ahmed, U. Das, Convective MHD oscillatory flow past a uniformly moving infinite vertical plate, Defence Science Journal, Vol. 42, No. 1, pp. 53, 1992.
[34] N. BABU, G. MURALI, S. BHATI, Casson fluid performance on natural convective dissipative couette flow past an infinite vertically inclined plate filled in porous medium with heat transfer, mhd and hall current effects, International Journal of Pharmaceutical Research, Vol. 10, No. 4, 2018.
[35] M. Mohammadi, A. Farajpour, A. Moradi, M. Hosseini, Vibration analysis of the rotating multilayer piezoelectric Timoshenko nanobeam, Engineering Analysis with Boundary Elements, Vol. 145, pp. 117-131, 2022.
[36] M. Mohammadi, A. Rastgoo, Primary and secondary resonance analysis of FG/lipid nanoplate with considering porosity distribution based on a nonlinear elastic medium, Mechanics of Advanced Materials and Structures, Vol. 27, No. 20, pp. 1709-1730, 2020.
[37] M. Mohammadi, M. Hosseini, M. Shishesaz, A. Hadi, A. Rastgoo, Primary and secondary resonance analysis of porous functionally graded nanobeam resting on a nonlinear foundation subjected to mechanical and electrical loads, European Journal of Mechanics-A/Solids, Vol. 77, pp. 103793, 2019.
[38] M. Mohammadi, A. Rastgoo, Nonlinear vibration analysis of the viscoelastic composite nanoplate with three directionally imperfect porous FG core, Structural Engineering and Mechanics, An Int'l Journal, Vol. 69, No. 2, pp. 131-143, 2019.
[39] A. Farajpour, A. Rastgoo, M. Mohammadi, Vibration, buckling and smart control of microtubules using piezoelectric nanoshells under electric voltage in thermal environment, Physica B: Condensed Matter, Vol. 509, pp. 100-114, 2017.
[40] A. Farajpour, M. H. Yazdi, A. Rastgoo, M. Loghmani, M. Mohammadi, Nonlocal nonlinear plate model for large amplitude vibration of magneto-electro-elastic nanoplates, Composite Structures, Vol. 140, pp. 323-336, 2016.
[41] A. Farajpour, M. H. Yazdi, A. Rastgoo, M. Mohammadi, A higher-order nonlocal strain gradient plate model for buckling of orthotropic nanoplates in thermal environment, Acta Mechanica, Vol. 227, pp. 1849-1867, 2016.
[42] M. Mohammadi, M. Safarabadi, A. Rastgoo, A. Farajpour, Hygro-mechanical vibration analysis of a rotating viscoelastic nanobeam embedded in a visco-Pasternak elastic medium and in a nonlinear thermal environment, Acta Mechanica, Vol. 227, pp. 2207-2232, 2016.
[43] M. R. Farajpour, A. Rastgoo, A. Farajpour, M. Mohammadi, Vibration of piezoelectric nanofilm-based electromechanical sensors via higher-order non-local strain gradient theory, Micro & Nano Letters, Vol. 11, No. 6, pp. 302-307, 2016.
[44] M. Baghani, M. Mohammadi, A. Farajpour, Dynamic and stability analysis of the rotating nanobeam in a nonuniform magnetic field considering the surface energy, International Journal of Applied Mechanics, Vol. 8, No. 04, pp. 1650048, 2016.
[45] M. Goodarzi, M. Mohammadi, M. Khooran, F. Saadi, Thermo-mechanical vibration analysis of FG circular and annular nanoplate based on the visco-pasternak foundation, Journal of Solid Mechanics, Vol. 8, No. 4, pp. 788-805, 2016.
[46] H. Asemi, S. Asemi, A. Farajpour, M. Mohammadi, Nanoscale mass detection based on vibrating piezoelectric ultrathin films under thermo-electro-mechanical loads, Physica E: Low-dimensional Systems and Nanostructures, Vol. 68, pp. 112-122, 2015.
[47] M. Safarabadi, M. Mohammadi, A. Farajpour, M. Goodarzi, Effect of surface energy on the vibration analysis of rotating nanobeam, 2015.
[49] M. Mohammadi, A. A. Nekounam, M. Amiri, The vibration analysis of the composite natural gas pipelines in the nonlinear thermal and humidity environment, in
Proceeding of, https://civilica.com/doc/540946/, pp.
[51] M. Mohammadi, A. Farajpour, A. Moradi, M. Ghayour, Shear buckling of orthotropic rectangular graphene sheet embedded in an elastic medium in thermal environment, Composites Part B: Engineering, Vol. 56, pp. 629-637, 2014.
[52] M. Mohammadi, A. Moradi, M. Ghayour, A. Farajpour, Exact solution for thermo-mechanical vibration of orthotropic mono-layer graphene sheet embedded in an elastic medium, Latin American Journal of Solids and Structures, Vol. 11, pp. 437-458, 2014.
[53] M. Mohammadi, A. Farajpour, M. Goodarzi, F. Dinari, Thermo-mechanical vibration analysis of annular and circular graphene sheet embedded in an elastic medium, Latin American Journal of Solids and Structures, Vol. 11, pp. 659-682, 2014.
[54] M. Mohammadi, A. Farajpour, M. Goodarzi, Numerical study of the effect of shear in-plane load on the vibration analysis of graphene sheet embedded in an elastic medium, Computational Materials Science, Vol. 82, pp. 510-520, 2014.
[55] A. Farajpour, A. Rastgoo, M. Mohammadi, Surface effects on the mechanical characteristics of microtubule networks in living cells, Mechanics Research Communications, Vol. 57, pp. 18-26, 2014.
[56] S. R. Asemi, M. Mohammadi, A. Farajpour, A study on the nonlinear stability of orthotropic single-layered graphene sheet based on nonlocal elasticity theory, Latin American Journal of Solids and Structures, Vol. 11, pp. 1541-1546, 2014.
[57] M. Goodarzi, M. Mohammadi, A. Farajpour, M. Khooran, Investigation of the effect of pre-stressed on vibration frequency of rectangular nanoplate based on a visco-Pasternak foundation, 2014.
[58] S. Asemi, A. Farajpour, H. Asemi, M. Mohammadi, Influence of initial stress on the vibration of double-piezoelectric-nanoplate systems with various boundary conditions using DQM, Physica E: Low-dimensional Systems and Nanostructures, Vol. 63, pp. 169-179, 2014.
[59] S. Asemi, A. Farajpour, M. Mohammadi, Nonlinear vibration analysis of piezoelectric nanoelectromechanical resonators based on nonlocal elasticity theory, Composite Structures, Vol. 116, pp. 703-712, 2014.
[60] M. Mohammadi, M. Ghayour, A. Farajpour, Free transverse vibration analysis of circular and annular graphene sheets with various boundary conditions using the nonlocal continuum plate model, Composites Part B: Engineering, Vol. 45, No. 1, pp. 32-42, 2013.
[61] M. Mohammadi, M. Goodarzi, M. Ghayour, A. Farajpour, Influence of in-plane pre-load on the vibration frequency of circular graphene sheet via nonlocal continuum theory, Composites Part B: Engineering, Vol. 51, pp. 121-129, 2013.
[62] M. Mohammadi, A. Farajpour, M. Goodarzi, R. Heydarshenas, Levy type solution for nonlocal thermo-mechanical vibration of orthotropic mono-layer graphene sheet embedded in an elastic medium, Journal of Solid Mechanics, Vol. 5, No. 2, pp. 116-132, 2013.
[63] M. Mohammadi, A. Farajpour, M. Goodarzi, H. Mohammadi, Temperature Effect on Vibration Analysis of Annular Graphene Sheet Embedded on Visco-Pasternak Foundati, Journal of Solid Mechanics, Vol. 5, No. 3, pp. 305-323, 2013.
[64] M. Danesh, A. Farajpour, M. Mohammadi, Axial vibration analysis of a tapered nanorod based on nonlocal elasticity theory and differential quadrature method, Mechanics Research Communications, Vol. 39, No. 1, pp. 23-27, 2012.
[65] A. Farajpour, A. Shahidi, M. Mohammadi, M. Mahzoon, Buckling of orthotropic micro/nanoscale plates under linearly varying in-plane load via nonlocal continuum mechanics, Composite Structures, Vol. 94, No. 5, pp. 1605-1615, 2012.
[66] M. Mohammadi, M. Goodarzi, M. Ghayour, S. Alivand, Small scale effect on the vibration of orthotropic plates embedded in an elastic medium and under biaxial in-plane pre-load via nonlocal elasticity theory, 2012.
[67] A. Farajpour, M. Mohammadi, A. Shahidi, M. Mahzoon, Axisymmetric buckling of the circular graphene sheets with the nonlocal continuum plate model, Physica E: Low-dimensional Systems and Nanostructures, Vol. 43, No. 10, pp. 1820-1825, 2011.
[68] A. Farajpour, M. Danesh, M. Mohammadi, Buckling analysis of variable thickness nanoplates using nonlocal continuum mechanics, Physica E: Low-dimensional Systems and Nanostructures, Vol. 44, No. 3, pp. 719-727, 2011.
[69] H. Moosavi, M. Mohammadi, A. Farajpour, S. Shahidi, Vibration analysis of nanorings using nonlocal continuum mechanics and shear deformable ring theory, Physica E: Low-dimensional Systems and Nanostructures, Vol. 44, No. 1, pp. 135-140, 2011.
[70] M. Mohammadi, M. Ghayour, A. Farajpour, Analysis of free vibration sector plate based on elastic medium by using new version differential quadrature method, Journal of solid mechanics in engineering, Vol. 3, No. 2, pp. 47-56, 2011.
[72] M. Mohammadi, A. Farajpour, A. R. Shahidi, Higher order shear deformation theory for the buckling of orthotropic rectangular nanoplates using nonlocal elasticity, in
Proceeding of, www.civilica.com/Paper-ISME19-ISME19_391.html, pp. 391.
[73] M. Mohammadi, A. Farajpour, A. R. Shahidi, Effects of boundary conditions on the buckling of single-layered graphene sheets based on nonlocal elasticity, in
Proceeding of, www.civilica.com/Paper-ISME19-ISME19_382.html, pp. 382.
[74] M. Mohammadi, M. Ghayour, A. Farajpour, Using of new version integral differential method to analysis of free vibration orthotropic sector plate based on elastic medium, in
Proceeding of, www.civilica.com/Paper-ISME19-ISME19_497.html, pp. 497.
[75] M. Mohammadi, A. Farajpour, A. Rastgoo, Coriolis effects on the thermo-mechanical vibration analysis of the rotating multilayer piezoelectric nanobeam, Acta Mechanica, Vol. 234, No. 2, pp. 751-774, 2023/02/01, 2023.