[1] A. Hadjesfandiari, G. Dargush, Couple stress theory for solids, International Journal of Solids and Structures, Vol. 48, No. 18, pp. 2496-2510, 2011.
[2] W. Koiter, Couple stresses in the theory of elasticity I,II, Proceedings of the Koninklijke Nederlandse Akademie Van Wetenschappen, Series BB Vol. 67, pp. 17-44, 1964.
[3] S. Park, X. Gao, Variational formulation of a modified couple stress theory and its application to a simple shear problem, Zeitschrift für angewandte Mathematik und Physik, Vol. 59, No. 5, pp. 904-917, 2008.
[4] R. Mindlin, H. Tiersten, Effects of couple stresses in linear elasticity, Archive for Rational Mechanics and Analysis, Vol. 11, pp. 415-447, 1962.
[5] R. Toupin, Elastic materials with couple-stresses, Archive for Rational Mechanics and Analysis, Vol. 11, pp. 385-414, 1962.
[6] A. Eringen, Theory of micropolar plates, Zeitschrift für angewandte Mathematik und Physik ZAMP, Vol. 18, No. 1, pp. 12-30, 1967.
[7] S. Ramezani, R. Naghdabadi, S. Sohrabpour, Analysis of micropolar elastic beams, European Journal of Mechanics-A/Solids, Vol. 28, No. 2, pp. 202-208, 2009.
[8] H. Ma, X. Gao, J. Reddy, A microstructure-dependent Timoshenko beam model based on a modified couple stress theory, Journal of the Mechanics and Physics of Solids, Vol. 56, No. 12, pp. 3379-3391, 2008.
[9] D. Steigmann, Equilibrium of prestressed networks, IMA journal of applied mathematics, Vol. 48, No. 2, pp. 195-215, 1992.
[10] D. Lam, F. Yang, A. Chong, J. Wang, P. Tong, Experiments and theory in strain gradient elasticity, Journal of the Mechanics and Physics of Solids, Vol. 51, No. 8, pp. 1477-1508, 2003.
[11] E. Alavi, M. Sadighi, M. Pazhooh, J. Ganghoffer, Development of size-dependent consistent couple stress theory of Timoshenko beams, Applied Mathematical Modelling, Vol. 79, pp. 685-712, 2020.
[12] M. Asghari, M. Kahrobaiyan, M. Rahaeifard, M. Ahmadian, Investigation of the size effects in Timoshenko beams based on the couple stress theory, Archive of Applied Mechanics, Vol. 81, No. 7, pp. 863-874, 2011.
[13] S. Park, X. Gao, Bernoulli–Euler beam model based on a modified couple stress theory, Journal of Micromechanics and Microengineering, Vol. 16, No. 11, pp. 2355, 2006.
[14] T. Kaneko, On Timoshenko's correction for shear in vibrating beams, Journal of Physics D: Applied Physics, Vol. 8, No. 16, pp. 1927, 1975.
[15] M. Kahrobaiyan, M. Asghari, M. Ahmadian, A Timoshenko beam element based on the modified couple stress theory, International Journal of Mechanical Sciences, Vol. 79, pp. 75-83, 2014.
[16] M. Mohammadi, A. Farajpour, A. Rastgoo, Coriolis effects on the thermo-mechanical vibration analysis of the rotating multilayer piezoelectric nanobeam, Acta Mechanica, Vol. 234, No. 2, pp. 751-774, 2023/02/01, 2023.
[17] M. Mohammadi, A. Farajpour, A. Moradi, M. Hosseini, Vibration analysis of the rotating multilayer piezoelectric Timoshenko nanobeam, Engineering Analysis with Boundary Elements, Vol. 145, pp. 117-131, 2022.
[18] M. Mohammadi, A. Rastgoo, Primary and secondary resonance analysis of FG/lipid nanoplate with considering porosity distribution based on a nonlinear elastic medium, Mechanics of Advanced Materials and Structures, Vol. 27, No. 20, pp. 1709-1730, 2020.
[19] M. Mohammadi, M. Hosseini, M. Shishesaz, A. Hadi, A. Rastgoo, Primary and secondary resonance analysis of porous functionally graded nanobeam resting on a nonlinear foundation subjected to mechanical and electrical loads, European Journal of Mechanics-A/Solids, Vol. 77, pp. 103793, 2019.
[20] M. Mohammadi, A. Rastgoo, Nonlinear vibration analysis of the viscoelastic composite nanoplate with three directionally imperfect porous FG core, Structural Engineering and Mechanics, An Int'l Journal, Vol. 69, No. 2, pp. 131-143, 2019.
[21] A. Farajpour, A. Rastgoo, M. Mohammadi, Vibration, buckling and smart control of microtubules using piezoelectric nanoshells under electric voltage in thermal environment, Physica B: Condensed Matter, Vol. 509, pp. 100-114, 2017.
[22] A. Farajpour, M. H. Yazdi, A. Rastgoo, M. Loghmani, M. Mohammadi, Nonlocal nonlinear plate model for large amplitude vibration of magneto-electro-elastic nanoplates, Composite Structures, Vol. 140, pp. 323-336, 2016.
[23] A. Farajpour, M. H. Yazdi, A. Rastgoo, M. Mohammadi, A higher-order nonlocal strain gradient plate model for buckling of orthotropic nanoplates in thermal environment, Acta Mechanica, Vol. 227, pp. 1849-1867, 2016.
[24] M. Mohammadi, M. Safarabadi, A. Rastgoo, A. Farajpour, Hygro-mechanical vibration analysis of a rotating viscoelastic nanobeam embedded in a visco-Pasternak elastic medium and in a nonlinear thermal environment, Acta Mechanica, Vol. 227, pp. 2207-2232, 2016.
[25] M. Goodarzi, M. Mohammadi, M. Khooran, F. Saadi, Thermo-mechanical vibration analysis of FG circular and annular nanoplate based on the visco-pasternak foundation, Journal of Solid Mechanics, Vol. 8, No. 4, pp. 788-805, 2016.
[26] M. Safarabadi, M. Mohammadi, A. Farajpour, M. Goodarzi, Effect of surface energy on the vibration analysis of rotating nanobeam, 2015.
[27] M. Mohammadi, A. Farajpour, A. Moradi, M. Ghayour, Shear buckling of orthotropic rectangular graphene sheet embedded in an elastic medium in thermal environment, Composites Part B: Engineering, Vol. 56, pp. 629-637, 2014.
[28] S. Asemi, A. Farajpour, M. Mohammadi, Nonlinear vibration analysis of piezoelectric nanoelectromechanical resonators based on nonlocal elasticity theory, Composite Structures, Vol. 116, pp. 703-712, 2014.
[29] M. Mohammadi, M. Ghayour, A. Farajpour, Free transverse vibration analysis of circular and annular graphene sheets with various boundary conditions using the nonlocal continuum plate model, Composites Part B: Engineering, Vol. 45, No. 1, pp. 32-42, 2013.
[30] M. Mohammadi, M. Goodarzi, M. Ghayour, A. Farajpour, Influence of in-plane pre-load on the vibration frequency of circular graphene sheet via nonlocal continuum theory, Composites Part B: Engineering, Vol. 51, pp. 121-129, 2013.
[31] W. Xia, L. Wang, L. Yin, Nonlinear non-classical microscale beams: static bending, postbuckling and free vibration, International Journal of Engineering Science, Vol. 48, No. 12, pp. 2044-2053, 2010.