Impact of additive manufacturing on advances in the design and production of the dental implants

Document Type : Review Paper


School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran


Dental implants are one of the restoration methods used to revitalize the function of a lost tooth. The natural tooth has a unique structure and composition that enable it to withstand mastication loads at different rates and angles of applying load in the wet and warm environment of the mouth. To simulate such behavior, the structure, material, and parameters of the design (implant diameter and length, abutment connection, etc.) in the dental implants are under unremitting study. A favorable dental implant should have sufficient strength and ultimate fatigue life on behalf of minimum displacement. It should be wear-resistant to keep the crown profile on the occlusal surface and remain in touch with other teeth. In the review, the effect of the usage of additive manufacturing on the quality of the 3D printed dental implant parts and important guidelines of design, have been studied and analyzed. Collected results are, based on finite element studies and experimental, empirical, and statistical investigations.


[1]          W. H. Taggart, A new and acuurate method of making gold inlays, Dent. Cos., vol. 49, pp. 1117–1121, 1907.
[2]          J. P. M. Tribst, A. M. de O. Dal Piva, J. A. Shibli, A. L. S. Borges, and R. N. Tango, Influence of implantoplasty on stress distribution of exposed implants at different bone insertion levels, Braz Oral Res, vol. 31, 2017.
[3]          G. Priest, Virtual-designed and computer-milled implant abutments, Journal of Oral and Maxillofacial Surgery, vol. 63, no. 9, pp. 22–32, 2005.
[4]          F. Sharifianjazi et al., Hydroxyapatite consolidated by zirconia: applications for dental implant, Journal of Composites and Compounds, vol. 2, no. 2, pp. 26–34, 2020.
[5]          H.-N. Mai, K.-B. Lee, and D.-H. Lee, Fit of interim crowns fabricated using photopolymer-jetting 3D printing, J Prosthet Dent, vol. 118, no. 2, pp. 208–215, 2017.
[6]          L. H. He and M. v Swain, Energy absorption characterization of human enamel using nanoindentation, Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, vol. 81, no. 2, pp. 484–492, 2007.
[7]          D. S. Brauer, J. F. Hilton, G. W. Marshall, and S. J. Marshall, Nano-and micromechanical properties of dentine: Investigation of differences with tooth side, J Biomech, vol. 44, no. 8, pp. 1626–1629, 2011.
[8]          A. J\\ira and J. Němeček, Nanoindentation of human tooth dentin, in Key Engineering Materials, 2014, pp. 133–136.
[9]          L. H. He and M. v Swain, Nanoindentation derived stress–strain properties of dental materials, Dental materials, vol. 23, no. 7, pp. 814–821, 2007.
[10]        L. N. Hoang, G. A. Thompson, S.-H. Cho, D. W. Berzins, and K. W. Ahn, Die spacer thickness reproduction for central incisor crown fabrication with combined computer-aided design and 3D printing technology: an in vitro study, J Prosthet Dent, vol. 113, no. 5, pp. 398–404, 2015.
[11]        W.-S. Lee, D.-H. Lee, and K.-B. Lee, Evaluation of internal fit of interim crown fabricated with CAD/CAM milling and 3D printing system, J Adv Prosthodont, vol. 9, no. 4, pp. 265–270, 2017.
[12]        K. Son, J.-H. Lee, and K.-B. Lee, Comparison of intaglio surface trueness of interim dental crowns fabricated with SLA 3D printing, DLP 3D printing, and milling technologies, in Healthcare, 2021, p. 983.
[13]        G. Çakmak et al., Effect of printing layer thickness on the trueness and margin quality of 3D-printed interim dental crowns, Applied Sciences, vol. 11, no. 19, p. 9246, 2021.
[14]        K. Son et al., A comparison study of marginal and internal fit assessment methods for fixed dental prostheses, J Clin Med, vol. 8, no. 6, p. 785, 2019.
[15]        C. Zarauz, A. Valverde, F. Martinez-Rus, B. Hassan, and G. Pradies, Clinical evaluation comparing the fit of all-ceramic crowns obtained from silicone and digital intraoral impressions, Clin Oral Investig, vol. 20, no. 4, pp. 799–806, 2016.
[16]        M. S. Prudente et al., Influence of scanner, powder application, and adjustments on CAD-CAM crown misfit, J Prosthet Dent, vol. 119, no. 3, pp. 377–383, 2018.
[17]        Z. Khamverdi, E. Najafrad, M. Farhadian, and others, In vitro comparison of marginal and internal fit of zirconia copings fabricated by one cad/cam system with two different scanners, Front Dent, 2021.
[18]        P. L. Tan, D. G. Gratton, A. M. Diaz-Arnold, and D. C. Holmes, An in vitro comparison of vertical marginal gaps of CAD/CAM titanium and conventional cast restorations, Journal of prosthodontics, vol. 17, no. 5, pp. 378–383, 2008.
[19]        M. J. Suárez, D. Villaumbrosia, P. González, G. Prad\\ies, and J. F. L. Lozano, Comparison of the marginal fit of Procera AllCeram crowns with two finish lines., International Journal of Prosthodontics, vol. 16, no. 3, 2003.
[20]        E. Anadioti, B. Kane, and E. Soulas, Current and emerging applications of 3D printing in restorative dentistry, Curr Oral Health Rep, vol. 5, no. 2, pp. 133–139, 2018.
[21]        N. Mart\\in-Ortega, A. Sallorenzo, J. Casajús, A. Cervera, M. Revilla-León, and M. Gómez-Polo, Fracture resistance of additive manufactured and milled implant-supported interim crowns, J Prosthet Dent, vol. 127, no. 2, pp. 267–274, 2022.
[22]        J. Mayer, B. Stawarczyk, K. Vogt, R. Hickel, D. Edelhoff, and M. Reymus, Influence of cleaning methods after 3D printing on two-body wear and fracture load of resin-based temporary crown and bridge material, Clin Oral Investig, vol. 25, no. 10, pp. 5987–5996, 2021.
[23]        S. Beattie et al., Fracture resistance of 3 types of primary esthetic stainless steel crowns, J Can Dent Assoc, vol. 77, no. 77, p. b90, 2011.
[24]        M. Zahran, O. El-Mowafy, L. Tam, P. A. Watson, and Y. Finer, Fracture strength and fatigue resistance of all-ceramic molar crowns manufactured with CAD/CAM technology, Journal of prosthodontics, vol. 17, no. 5, pp. 370–377, 2008.
[25]        M. Zimmermann, A. Ender, G. Egli, M. Özcan, and A. Mehl, Fracture load of CAD/CAM-fabricated and 3D-printed composite crowns as a function of material thickness, Clin Oral Investig, vol. 23, no. 6, pp. 2777–2784, 2019.
[26]        P. V. von Steyern, S. Ebbesson, J. Holmgren, P. Haag, and K. Nilner, Fracture strength of two oxide ceramic crown systems after cyclic pre-loading and thermocycling, J Oral Rehabil, vol. 33, no. 9, pp. 682–689, 2006.
[27]        A. Tahayeri et al., 3D printed versus conventionally cured provisional crown and bridge dental materials, Dental Materials, vol. 34, no. 2, pp. 192–200, 2018.
[28]        K. D. Jørgensen and A. L. Esbensen, The relationship between the film thickness of zinc phosphate cement and the retention of veneer crowns, Acta Odontol Scand, vol. 26, no. 3, pp. 169–176, 1968.
[29]        J. P. M. Tribst, A. M. D. O. D. Piva, A. L. S. Borges, and M. A. Bottino, Influence of crown and hybrid abutment ceramic materials on the stress distribution of implant-supported prosthesis, Rev Odontol UNESP, vol. 47, pp. 149–154, 2018.
[30]        A. Elsayed, S. Wille, M. Al-Akhali, and M. Kern, Effect of fatigue loading on the fracture strength and failure mode of lithium disilicate and zirconia implant abutments, Clin Oral Implants Res, vol. 29, no. 1, pp. 20–27, 2018.
[31]        R. A. Markarian, D. P. Galles, and F. M. G. França, Dental implant-abutment fracture resistance and wear induced by single-unit screw-retained CAD components fabricated by four CAM methods after mechanical cycling, J Prosthet Dent, vol. 128, no. 3, pp. 450–457, 2022.
[32]        Y. Hazra, A. Rao, and B. S. Suprabha, 3-D Printing: Its Applications in Pediatric Dental Practice: A Review of Literature, Indian Journal of Contemporary Dentistry, vol. 10, no. 2, pp. 17–23, 2022.
[33]        S. Kriegseis, L. Aretz, M.-E. Jennes, F. Schmidt, T. Tonnesen, and K. Schickle, 3D printing of complex ceramic dental implant abutments by using Direct Inkjet Printing, Mater Lett, vol. 313, p. 131789, 2022.
[34]        J. P. M. Tribst, A. M. de Oliveira Dal Piva, and A. L. S. Borges, Biomechanical behavior of indirect composite materials: a 3D-FEA study, Braz Dent Sci, vol. 20, no. 3, pp. 52–57, 2017.
[35]        H. Lee, M. Jo, and G. Noh, Biomechanical effects of dental implant diameter, connection type, and bone density on microgap formation and fatigue failure: A finite element analysis, Comput Methods Programs Biomed, vol. 200, p. 105863, 2021.
[36]        H. Lee, M. Jo, I. Sailer, and G. Noh, Effects of implant diameter, implant-abutment connection type, and bone density on the biomechanical stability of implant components and bone: A finite element analysis study, J Prosthet Dent, 2021.
[37]        H. A. Bulaqi, M. M. Mashhadi, H. Safari, M. M. Samandari, and F. Geramipanah, Effect of increased crown height on stress distribution in short dental implant components and their surrounding bone: A finite element analysis, J Prosthet Dent, vol. 113, no. 6, pp. 548–557, 2015.
[38]        F. Sun, L.-T. Lv, D.-D. Xiang, D.-C. Ba, Z. Lin, and G.-Q. Song, Effect of central screw taper angles on the loosening performance and fatigue characteristics of dental implants, J Mech Behav Biomed Mater, vol. 129, p. 105136, 2022.
[39]        F. Sun, W. Cheng, B. Zhao, G.-Q. Song, and Z. Lin, Evaluation the loosening of abutment screws in fluid contamination: an in vitro study, Sci Rep, vol. 12, no. 1, p. 10797, 2022, doi: 10.1038/s41598-022-14791-w.
[40]        I. Pournasiri, F. Farid, H. Z. Jafari, N. Simdar, and D. Maleki, Screw loosening of original and non-original abutments in implant dentistry: an in vitro study, Journal of Osseointegration, 2022.
[41]        M. Campaner, S.-B. Bitencourt, D.-M. dos Santos, A.-A. Pesqueira, M.-C. Goiato, and others, Stress distribution of multiple implant-supported prostheses: Photoelastic and strain gauge analyses of external hexagon and morse taper connections, J Clin Exp Dent, vol. 14, no. 3, p. e235, 2022.
[42]        R. A. Maslucan and J. A. Dominguez, A Finite Element Stress Analysis of a Concical Triangular Connection in Implants: A New Proposal, Materials, vol. 15, no. 10, p. 3680, 2022.
[43]        E. Jalalian, A. Zarbakhsh, S. Zare, and H. K. Pour, Effect of Lateral Cyclic Loading on Screw Loosening in Morse Taper Implant-Straight Abutment Connection, European Journal of Dental and Oral Health, vol. 3, no. 2, pp. 30–34, 2022.
[44]        O. E. B. Paganelli, P. L. Santos, R. Spin-Neto, V. A. Pereira-Filho, and R. Margonar, Stability of mandibular implants with Morse taper and external hexagon connections placed under immediate loading: a longitudinal clinical study, Gen Dent, 2022.
[45]        A. Khraisat, A. Hashimoto, S. Nomura, and O. Miyakawa, Effect of lateral cyclic loading on abutment screw loosening of an external hexagon implant system, J Prosthet Dent, vol. 91, no. 4, pp. 326–334, 2004.
[46]        P. Mashhadi Keshtiban, M. Regbat, and M. Mashhadi Keshtiban, An investigation of tensile strength of Ti6Al4V titanium screw inside femur bone using finite element and experimental tests, Journal of Computational Applied Mechanics, vol. 51, no. 1, pp. 91–97, 2020.
[47]        G. E. Romanos, G. A. Fischer, Z. T. Rahman, and R. Delgado-Ruiz, Spectrometric Analysis of the Wear from Metallic and Ceramic Dental Implants following Insertion: An In Vitro Study, Materials, vol. 15, no. 3, p. 1200, 2022.
[48]        A. Zabala, L. Blunt, R. Tejero, I. Llavori, A. Aginagalde, and W. Tato, Quantification of dental implant surface wear and topographical modification generated during insertion, Surf Topogr, vol. 8, no. 1, p. 15002, 2020.
[49]        G. E. Romanos, G. A. Fischer, and R. Delgado-Ruiz, Titanium wear of dental implants from placement, under loading and maintenance protocols, Int J Mol Sci, vol. 22, no. 3, p. 1067, 2021.
[50]        T. W. Bauer, Particles and periimplant bone resorption, Clin Orthop Relat Res, vol. 405, pp. 138–143, 2002.
[51]        L. Zhang et al., The effects of biomaterial implant wear debris on osteoblasts, Front Cell Dev Biol, vol. 8, p. 352, 2020.
[52]        S. M. Horowitz and M. A. Purdon, Mechanisms of cellular recruitment in aseptic loosening of prosthetic joint implants, Calcif Tissue Int, vol. 57, no. 4, pp. 301–305, 1995.
[53]        K. Sadr and S. M. V. Pakdel, A 3-D finite element analysis of the effect of dental implant thread angle on stress distribution in the surrounding bone, J Dent Res Dent Clin Dent Prospects, vol. 16, no. 1, p. 53, 2022.
[54]        V. Khened, S. Bhandarkar, and P. Dhatrak, Dental implant thread profile optimization using Taguchi approach, Mater Today Proc, 2022.
[55]        A. Chakraborty, K. D. Sahare, P. Datta, S. Majumder, A. Roychowdhury, and B. Basu, Probing the Influence of Hybrid Thread Design on Biomechanical Response of Dental Implants: Finite Element Study and Experimental Validation, J Biomech Eng, vol. 145, no. 1, p. 11011, 2022.
[56]        F. Mottaghi Dastenaei, M. Moghimi Zand, and S. Noorolahian, Thread pitch variant in orthodontic mini-screws: a 3-D finite element analysis, Journal of Computational Applied Mechanics, vol. 46, no. 2, pp. 257–265, 2015.
[57]        T. Li et al., Optimum selection of the dental implant diameter and length in the posterior mandible with poor bone quality–A 3D finite element analysis, Appl Math Model, vol. 35, no. 1, pp. 446–456, 2011.
[58]        A. Geramy and S. M. Morgano, Finite element analysis of three designs of an implant-supported molar crown, J Prosthet Dent, vol. 92, no. 5, pp. 434–440, 2004.
[59]        A. R. Carreiras, E. M. M. Fonseca, D. Martins, and R. Couto, The axisymmetric computational study of a femoral component to analysis the effect of titanium alloy and diameter variation., Journal of Computational Applied Mechanics, vol. 51, no. 2, pp. 403–410, 2020.
[60]        J. Schulte, A. M. Flores, and M. Weed, Crown-to-implant ratios of single tooth implant-supported restorations, J Prosthet Dent, vol. 98, no. 1, pp. 1–5, 2007.
[61]        H. Birdi, J. Schulte, A. Kovacs, M. Weed, and S.-K. Chuang, Crown-to-implant ratios of short-length implants, Journal of oral Implantology, vol. 36, no. 6, pp. 425–433, 2010.
[62]        A. Quaranta, M. Piemontese, G. Rappelli, G. Sammartino, and M. Procaccini, Technical and biological complications related to crown to implant ratio: a systematic review, Implant Dent, vol. 23, no. 2, pp. 180–187, 2014.
[63]        C. Zhang et al., 3D-printed pre-tapped-hole scaffolds facilitate one-step surgery of predictable alveolar bone augmentation and simultaneous dental implantation, Compos B Eng, vol. 229, p. 109461, 2022.
[64]        D. Lin, Q. Li, W. Li, S. Zhou, and M. v Swain, Design optimization of functionally graded dental implant for bone remodeling, Compos B Eng, vol. 40, no. 7, pp. 668–675, 2009.
[65]        C. Hou et al., Additive manufacturing of functionally graded porous titanium scaffolds for dental applications, Biomaterials Advances, vol. 139, p. 213018, 2022.
[66]        F. Zhang et al., 3D printed zirconia dental implants with integrated directional surface pores combine mechanical strength with favorable osteoblast response, Acta Biomater, vol. 150, pp. 427–441, 2022.
[67]        R. Dabaja, B. I. Popa, S.-Y. Bak, G. Mendonca, and M. Banu, Design and Manufacturing of a Functionally Graded Porous Dental Implant, in International Manufacturing Science and Engineering Conference, 2022, p. V001T01A022.
[68]        A. Yu et al., Additive manufacturing of multi-morphology graded titanium scaffolds for bone implant applications, J Mater Sci Technol, 2022.
[69]        M. Babaei, F. Kiarasi, K. Asemi, and M. Hosseini, Functionally graded saturated porous structures: A review, Journal of Computational Applied Mechanics, vol. 53, no. 2, pp. 297–308, 2022.
[70]        K. Chua, I. Khan, R. Malhotra, and D. Zhu, Additive manufacturing and 3D printing of metallic biomaterials, Engineered Regeneration, 2022.
[71]        S. Y. Sonaye et al., Patient-specific 3D printed Poly-ether-ether-ketone (PEEK) dental implant system, J Mech Behav Biomed Mater, vol. 136, p. 105510, 2022.
[72]        J. Olander, A. Ruud, A. Wennerberg, and V. F. Stenport, Wear particle release at the interface of dental implant components: Effects of different material combinations. An in vitro study, Dental Materials, vol. 38, no. 3, pp. 508–516, 2022.
[73]        S. Madeira, M. Buciumeanu, D. Nobre, O. Carvalho, and F. S. Silva, Development of a novel hybrid Ti6Al4V–ZrO2 surface with high wear resistance by laser and hot pressing techniques for dental implants, J Mech Behav Biomed Mater, vol. 136, p. 105508, 2022.
[74]        C. L. Sikora, M. F. Alfaro, J. C.-C. Yuan, V. A. Barao, C. Sukotjo, and M. T. Mathew, Wear and corrosion interactions at the titanium/zirconia interface: dental implant application, Journal of Prosthodontics, vol. 27, no. 9, pp. 842–852, 2018.
[75]        D. R. Unune, G. R. Brown, and G. C. Reilly, Thermal based surface modification techniques for enhancing the corrosion and wear resistance of metallic implants: A review, Vacuum, p. 111298, 2022.
[76]        F. Sun et al., Duplex treatment of arc plasma nitriding and PVD TiN coating applied to dental implant screws, Surf Coat Technol, vol. 439, p. 128449, 2022.
[77]        F. Azzola et al., Biofilm formation on dental implant surface treated by implantoplasty: an in situ study, Dent J (Basel), vol. 8, no. 2, p. 40, 2020.
[78]        I. C. Jorio, B. Stawarczyk, T. Attin, P. R. Schmidlin, and P. Sahrmann, Reduced fracture load of dental implants after implantoplasty with different instrumentation sequences. An in vitro study, Clin Oral Implants Res, vol. 32, no. 8, pp. 881–892, 2021.
[79]        F. N. Barrak, S. Li, A. M. Muntane, and J. R. Jones, Particle release from implantoplasty of dental implants and impact on cells, Int J Implant Dent, vol. 6, no. 1, pp. 1–9, 2020.
[80]        Z. Zhou et al., The unfavorable role of titanium particles released from dental implants, Nanotheranostics, vol. 5, no. 3, p. 321, 2021.
[81]        A. Sargeant, T. Goswami, and M. Swank, Ion concentrations from hip implants., J Surg Orthop Adv, vol. 15, no. 2, pp. 113–114, 2006.
[82]        B. C. Costa, C. K. Tokuhara, L. A. Rocha, R. C. Oliveira, P. N. Lisboa-Filho, and J. C. Pessoa, Vanadium ionic species from degradation of Ti-6Al-4V metallic implants: In vitro cytotoxicity and speciation evaluation, Materials Science and Engineering: C, vol. 96, pp. 730–739, 2019.
[83]        N. J. Hallab, K. Mikecz, C. Vermes, A. Skipor, and J. J. Jacobs, Orthopaedic implant related metal toxicity in terms of human lymphocyte reactivity to metal-protein complexes produced from cobalt-base and titanium-base implant alloy degradation, in Molecular Mechanisms of Metal Toxicity and Carcinogenesis, Springer, 2001, pp. 127–136.
[84]        A. Ravidà, R. Siqueira, I. Saleh, M. H. A. Saleh, A. Giannobile, and H. L. Wang, Lack of clinical benefit of implantoplasty to improve implant survival rate, J Dent Res, vol. 99, no. 12, pp. 1348–1355, 2020.
[85]        A. Rashad, P. Sadr-Eshkevari, M. Weuster, I. Schmitz, N. Prochnow, and P. Maurer, Material attrition and bone micromorphology after conventional and ultrasonic implant site preparation, Clin Oral Implants Res, vol. 24, pp. 110–114, 2013.
[86]        G. M. Esteves, J. Esteves, M. Resende, L. Mendes, and A. S. Azevedo, Antimicrobial and antibiofilm coating of dental implants—past and new perspectives, Antibiotics, vol. 11, no. 2, p. 235, 2022.
[87]        S. Duan et al., Multifunctional antimicrobial materials: From rational design to biomedical applications, Prog Mater Sci, vol. 125, p. 100887, 2022.
[88]        N. Gligorijević et al., Antimicrobial Properties of Silver-Modified Denture Base Resins, Nanomaterials, vol. 12, no. 14, p. 2453, 2022.
[89]        S. Aati, A. Chauhan, B. Shrestha, S. M. Rajan, H. Aati, and A. Fawzy, Development of 3D printed dental resin nanocomposite with graphene nanoplatelets enhanced mechanical properties and induced drug-free antimicrobial activity, Dental Materials, 2022.
[90]        F. Kiarasi, M. Babaei, P. Sarvi, K. Asemi, M. Hosseini, and M. Omidi Bidgoli, A review on functionally graded porous structures reinforced by graphene platelets, Journal of Computational Applied Mechanics, vol. 52, no. 4, pp. 731–750, 2021.
[91]        J. Yue et al., 3D-printable antimicrobial composite resins, Adv Funct Mater, vol. 25, no. 43, pp. 6756–6767, 2015.
Volume 54, Issue 2
June 2023
Pages 323-335
  • Receive Date: 21 November 2022
  • Revise Date: 05 December 2022
  • Accept Date: 06 December 2022