Numerical simulation of the mixing layer problem based on a new two-fluid turbulence model

Document Type : Research Paper

Authors

1 AKFA University, 10, 1-blind alley, Kukcha Darvoza, Tashkent, 100020, Uzbekistan

2 Institute of Mechanics and Seismic Stability of Structures, Academy of Sciences of the Republic of Uzbekistan

3 Fergana Polytechnic Institute, 86, st. Fergana, Fergana, 150107, Uzbekistan

Abstract

The paper considers the simulation of the mixing of two flows with different velocities in a flat channel. The calculations are based on the numerical solution of a system of non-stationary equations using a two-fluid turbulence model. The results of longitudinal velocity and turbulent stress profiles in different sections of the channel are obtained. For the numerical implementation of the equations of turbulent hydrodynamics, the control volume method was used, and the relationship between velocities and pressure was found using the SIMPLE procedure. In this case, the convective terms in the equations were approximated by the difference against the flow of the second order of accuracy in an explicit way, and the diffusion terms were approximated by the central difference in an implicit form. To confirm the correctness of the obtained numerical results, a comparison was made with experimental data from the NASA database.

Keywords

[1]          M. R. Gorji, S. Cosyns, C. Debbaut, G. Ghorbaniasl, W. Willaert, W. Ceelen, Analysis of the effect of liquid viscosity on the aerosol distribution during Pressurized Intraperitoneal Aerosol Chemotherapy (PIPAC) using computational modeling, European Journal of Surgical Oncology, Vol. 48, No. 2, pp. e159, 2022.
[2]          M. R. Gorji, C. Debbaut, G. Ghorbaniasl, W. Willaert, S. Cosyns, W. Ceelen, Electrostatic precipitation pressurized intraperitoneal aerosol chemotherapy (ePIPAC): Finding the optimal electrical potential, European Journal of Surgical Oncology, Vol. 47, No. 2, pp. e30, 2021.
[3]          M. Rahimi-Gorji, G. Ghorbaniasl, S. Cosyns, W. Willaert, W. Ceelen, Effect of fluid flow rate and droplet size on spatial aerosol distribution during pressurized intraperiational aerosol chemotherapy (PIPAC), in Proceeding of.
[4]          H. Asemi, S. Asemi, A. Farajpour, M. Mohammadi, Nanoscale mass detection based on vibrating piezoelectric ultrathin films under thermo-electro-mechanical loads, Physica E: Low-dimensional Systems and Nanostructures, Vol. 68, pp. 112-122, 2015.
[5]          S. Asemi, A. Farajpour, H. Asemi, M. Mohammadi, Influence of initial stress on the vibration of double-piezoelectric-nanoplate systems with various boundary conditions using DQM, Physica E: Low-dimensional Systems and Nanostructures, Vol. 63, pp. 169-179, 2014.
[6]          S. Asemi, A. Farajpour, M. Mohammadi, Nonlinear vibration analysis of piezoelectric nanoelectromechanical resonators based on nonlocal elasticity theory, Composite Structures, Vol. 116, pp. 703-712, 2014.
[7]          S. R. Asemi, M. Mohammadi, A. Farajpour, A study on the nonlinear stability of orthotropic single-layered graphene sheet based on nonlocal elasticity theory, Latin American Journal of Solids and Structures, Vol. 11, No. 9, pp. 1515-1540, 2014.
[8]          M. Baghani, M. Mohammadi, A. Farajpour, Dynamic and stability analysis of the rotating nanobeam in a nonuniform magnetic field considering the surface energy, International Journal of Applied Mechanics, Vol. 8, No. 04, pp. 1650048, 2016.
[9]          !!! INVALID CITATION !!! [4-35].
[10]        A. Farajpour, M. Mohammadi, A. Shahidi, M. Mahzoon, Axisymmetric buckling of the circular graphene sheets with the nonlocal continuum plate model, Physica E: Low-dimensional Systems and Nanostructures, Vol. 43, No. 10, pp. 1820-1825, 2011.
[11]        M. Mohammadi, A. Rastgoo, Primary and secondary resonance analysis of FG/lipid nanoplate with considering porosity distribution based on a nonlinear elastic medium, Mechanics of Advanced Materials and Structures, Vol. 27, No. 20, pp. 1709-1730, 2020.
[12]        M. Mohammadi, M. Hosseini, M. Shishesaz, A. Hadi, A. Rastgoo, Primary and secondary resonance analysis of porous functionally graded nanobeam resting on a nonlinear foundation subjected to mechanical and electrical loads, European Journal of Mechanics-A/Solids, Vol. 77, pp. 103793, 2019.
[13]        M. Mohammadi, A. Rastgoo, Nonlinear vibration analysis of the viscoelastic composite nanoplate with three directionally imperfect porous FG core, Structural Engineering and Mechanics, An Int'l Journal, Vol. 69, No. 2, pp. 131-143, 2019.
[14]        A. Farajpour, A. Rastgoo, M. Mohammadi, Vibration, buckling and smart control of microtubules using piezoelectric nanoshells under electric voltage in thermal environment, Physica B: Condensed Matter, Vol. 509, pp. 100-114, 2017.
[15]        A. Farajpour, M. H. Yazdi, A. Rastgoo, M. Loghmani, M. Mohammadi, Nonlocal nonlinear plate model for large amplitude vibration of magneto-electro-elastic nanoplates, Composite Structures, Vol. 140, pp. 323-336, 2016.
[16]        A. Farajpour, M. Yazdi, A. Rastgoo, M. Mohammadi, A higher-order nonlocal strain gradient plate model for buckling of orthotropic nanoplates in thermal environment, Acta Mechanica, Vol. 227, No. 7, pp. 1849-1867, 2016.
[17]        M. R. Farajpour, A. Rastgoo, A. Farajpour, M. Mohammadi, Vibration of piezoelectric nanofilm-based electromechanical sensors via higher-order non-local strain gradient theory, Micro & Nano Letters, Vol. 11, No. 6, pp. 302-307, 2016.
[18]        M. Mohammadi, M. Safarabadi, A. Rastgoo, A. Farajpour, Hygro-mechanical vibration analysis of a rotating viscoelastic nanobeam embedded in a visco-Pasternak elastic medium and in a nonlinear thermal environment, Acta Mechanica, Vol. 227, No. 8, pp. 2207-2232, 2016.
[19]        M. Safarabadi, M. Mohammadi, A. Farajpour, M. Goodarzi, Effect of surface energy on the vibration analysis of rotating nanobeam, 2015.
[20]        A. Farajpour, A. Rastgoo, M. Mohammadi, Surface effects on the mechanical characteristics of microtubule networks in living cells, Mechanics Research Communications, Vol. 57, pp. 18-26, 2014.
[21]        M. Goodarzi, M. Mohammadi, A. Farajpour, M. Khooran, Investigation of the effect of pre-stressed on vibration frequency of rectangular nanoplate based on a visco-Pasternak foundation, 2014.
[22]        M. Mohammadi, A. Farajpour, M. Goodarzi, F. Dinari, Thermo-mechanical vibration analysis of annular and circular graphene sheet embedded in an elastic medium, Latin American Journal of Solids and Structures, Vol. 11, pp. 659-682, 2014.
[23]        M. Mohammadi, A. Farajpour, M. Goodarzi, Numerical study of the effect of shear in-plane load on the vibration analysis of graphene sheet embedded in an elastic medium, Computational Materials Science, Vol. 82, pp. 510-520, 2014.
[24]        M. Mohammadi, A. Farajpour, A. Moradi, M. Ghayour, Shear buckling of orthotropic rectangular graphene sheet embedded in an elastic medium in thermal environment, Composites Part B: Engineering, Vol. 56, pp. 629-637, 2014.
[25]        M. Mohammadi, A. Moradi, M. Ghayour, A. Farajpour, Exact solution for thermo-mechanical vibration of orthotropic mono-layer graphene sheet embedded in an elastic medium, Latin American Journal of Solids and Structures, Vol. 11, No. 3, pp. 437-458, 2014.
[26]        M. Mohammadi, A. Farajpour, M. Goodarzi, R. Heydarshenas, Levy type solution for nonlocal thermo-mechanical vibration of orthotropic mono-layer graphene sheet embedded in an elastic medium, Journal of Solid Mechanics, Vol. 5, No. 2, pp. 116-132, 2013.
[27]        M. Mohammadi, A. Farajpour, M. Goodarzi, H. Mohammadi, Temperature Effect on Vibration Analysis of Annular Graphene Sheet Embedded on Visco-Pasternak Foundati, Journal of Solid Mechanics, Vol. 5, No. 3, pp. 305-323, 2013.
[28]        M. Mohammadi, M. Ghayour, A. Farajpour, Free transverse vibration analysis of circular and annular graphene sheets with various boundary conditions using the nonlocal continuum plate model, Composites Part B: Engineering, Vol. 45, No. 1, pp. 32-42, 2013.
[29]        M. Mohammadi, M. Goodarzi, M. Ghayour, A. Farajpour, Influence of in-plane pre-load on the vibration frequency of circular graphene sheet via nonlocal continuum theory, Composites Part B: Engineering, Vol. 51, pp. 121-129, 2013.
[30]        M. Danesh, A. Farajpour, M. Mohammadi, Axial vibration analysis of a tapered nanorod based on nonlocal elasticity theory and differential quadrature method, Mechanics Research Communications, Vol. 39, No. 1, pp. 23-27, 2012.
[31]        A. Farajpour, A. Shahidi, M. Mohammadi, M. Mahzoon, Buckling of orthotropic micro/nanoscale plates under linearly varying in-plane load via nonlocal continuum mechanics, Composite Structures, Vol. 94, No. 5, pp. 1605-1615, 2012.
[32]        M. Mohammadi, M. Goodarzi, M. Ghayour, S. Alivand, Small scale effect on the vibration of orthotropic plates embedded in an elastic medium and under biaxial in-plane pre-load via nonlocal elasticity theory, 2012.
[33]        A. Farajpour, M. Danesh, M. Mohammadi, Buckling analysis of variable thickness nanoplates using nonlocal continuum mechanics, Physica E: Low-dimensional Systems and Nanostructures, Vol. 44, No. 3, pp. 719-727, 2011.
[34]        N. Ghayour, A. Sedaghat, M. Mohammadi, Wave propagation approach to fluid filled submerged visco-elastic finite cylindrical shells, 2011.
[35]        H. Moosavi, M. Mohammadi, A. Farajpour, S. Shahidi, Vibration analysis of nanorings using nonlocal continuum mechanics and shear deformable ring theory, Physica E: Low-dimensional Systems and Nanostructures, Vol. 44, No. 1, pp. 135-140, 2011.
[36]        M. Mohammadi, M. Ghayour, A. Farajpour, Analysis of free vibration sector plate based on elastic medium by using new version of differential quadrature method, Journal of Simulation and Analysis of Novel Technologies in Mechanical Engineering, Vol. 3, No. 2, pp. 47-56, 2010.
[37]        M. Goodarzi, M. Mohammadi, M. Khooran, F. Saadi, Thermo-mechanical vibration analysis of FG circular and annular nanoplate based on the visco-pasternak foundation, Journal of Solid Mechanics, Vol. 8, No. 4, pp. 788-805, 2016.
[38]        C. Rumsey, Turbulence Modeling Resource. NASA Langley Research Center, Hampton, VA, 2020.
[39]        B. Launder, Simulation and modeling of turbulent flows, ICASE/Larc Series in Computational Science and Engineering, Vol. 109, 1996.
[40]        P. Spalart, S. Allmaras, A one-equation turbulence model for aerodynamic flows, in Proceeding of, 439.
[41]        F. R. Menter, Two-equation eddy-viscosity turbulence models for engineering applications, AIAA journal, Vol. 32, No. 8, pp. 1598-1605, 1994.
[42]        S. Azad, A. Riasi, H. Mahmoodi Darian, H. Amiri Moghadam, Parametric study of a viscoelastic RANS turbulence model in the fully developed channel flow, Journal of Computational Applied Mechanics, Vol. 48, No. 1, pp. 65-74, 2017.
[43]        M. Ghasemian, A. Nejat, Aerodynamic Noise computation of the flow field around NACA 0012 airfoil using large eddy simulation and acoustic analogy, Journal of Computational Applied Mechanics, Vol. 46, No. 1, pp. 41-50, 2015.
[44]        Z. Malikov, Mathematical model of turbulence based on the dynamics of two fluids, Applied Mathematical Modelling, Vol. 82, pp. 409-436, 2020.
[45]        Z. Malikov, M. Madaliev, Numerical simulation of two-phase flow in a centrifugal separator, Fluid Dynamics, Vol. 55, No. 8, pp. 1012-1028, 2020.
[46]        D. Spalding, CHEMICAL-REACTION IN TURBULENT FLUIDS, Physicochemical Hydrodynamics, Vol. 4, No. 4, pp. 323-336, 1983.
[47]        B. E. Launder, G. J. Reece, W. Rodi, Progress in the development of a Reynolds-stress turbulence closure, Journal of fluid mechanics, Vol. 68, No. 3, pp. 537-566, 1975.
[48]        C. Hirsch, Numerical computation of internal and external flows. Vol. 2-Computational Methods for Inviscid and Viscous Flows, Chichester, 1990.
[49]        J. Delville, S. Bellin, J. Garem, J. Bonnet, Analysis of structures in a turbulent, plane mixing layer by use of a pseudo flow visualization method based on hot-wire anemometry,  in: Advances in Turbulence 2, Eds., pp. 251-256: Springer, 1989.
[50]        З. Маликов, М. Мадалиев, Численное моделирование течения в плоском внезапно расширяющемся канале на основе новой двужидкостной модели турбулентности, Вестник Московского государственного технического университета им. НЭ Баумана. Серия «Естественные науки», No. 4 (97), pp. 24-39, 2021.
[51]        D. W. Peaceman, J. Rachford, Henry H, The numerical solution of parabolic and elliptic differential equations, Journal of the Society for industrial and Applied Mathematics, Vol. 3, No. 1, pp. 28-41, 1955.
[52]        S. V. Patankar, 2018, Numerical heat transfer and fluid flow, CRC press,
Volume 53, Issue 2
June 2022
Pages 282-296
  • Receive Date: 06 April 2022
  • Revise Date: 23 May 2022
  • Accept Date: 31 May 2022
  • First Publish Date: 01 June 2022