Routing and avoiding collisions of autonomous robots in unknown environments with fixed and moving obstacles

Document Type : Research Paper

Authors

Department of Engineering, Abadan Branch, Islamic Azad University, Abadan, Iran

Abstract

This research employs a hierarchical fuzzy control method to guide and control autonomous robots in environments containing fixed and moving obstacles. Considering that robots must operate in social environments to serve humans better, they must be able to navigate in the presence of fixed obstacles, moving objects and people without colliding or creating a fear of collision, and reach the final destination. The current work utilizes a hierarchical fuzzy controller with three agents of navigation, obstacle avoidance, and perception to achieve these goals. The coordination between these three agents is done using the definition of special utility functions. The obtained results confirm the correctness of the proposed approach in the successful passage of the robot past the fixed and moving obstacles and bringing it to the target point.

Keywords

[1]          B. Innocenti, B. López, J. Salvi, A multi-agent architecture with cooperative fuzzy control for a mobile robot, Robotics and Autonomous Systems, Vol. 55, No. 12, pp. 881-891, 2007.
[2]          Y. Ono, H. Uchiyama, W. Potter, 2004, A mobile robot for corridor navigation: A multi-agent approach,
[3]          M. W. Mehrez, G. K. I Mann, R. G. Gosine, An optimization based approach for relative localization and relative tracking control in multi-robot systems, Journal of Intelligent & Robotic Systems, Vol. 85, No. 2, pp. 385-408, 2017.
[4]          S. Mohammadrezaei Nodeh, M. H. Ghasemi, H. R. Mohammadi Daniali, Hybrid Control of Fuzzy Type 2-Neural Network and Higher Order Sliding Mode for Robotic Manipulator with Parametric Uncertainties and Perturbations, Journal of Mechanical Engineering, Vol. 51, No. 1, pp. 219-228, 2021.
[5]          s. d. nikkhoe tanha, M. Habibnejad korayem, s. fathollahi dehkordi, Path Design and Control of a Moving Social Robot in an Environment with Moving Obstacles in Order to Reach a Moving Target through Fuzzy Control, Amirkabir Journal of Mechanical Engineering, Vol. 53, No. 2, pp. 993-1014, 2021.
[6]          V. Tikani, h. S. Shahbazi, Design and Implementation of Pure Fuzzy Controller for Attitude Control of Quadrotor using Kalman Filter, Journal of Mechanical Engineering, Vol. 48, No. 2, pp. 65-73, 2018.
[7]          A. Ghanavati, M. J. Mahmoodabadi, M. Beigzadeh Abbasi, Optimal Design of the Proportional-Integral-Derivative Fuzzy Controller for a Three Degree-of-Freedom Plane Cable Robot based on Krill Herd Optimization, Journal of Mechanical Engineering, Vol. 51, No. 1, pp. 183-192, 2021.
[8]          H. Woong-Gie, B. Seung-Min, K. Tae-Yong, Genetic algorithm based path planning and dynamic obstacle avoidance of mobile robots, in Proceeding of, 2747-2751 vol.3.
[9]          T. T. Mac, C. Copot, D. T. Tran, R. De Keyser, A hierarchical global path planning approach for mobile robots based on multi-objective particle swarm optimization, Applied Soft Computing, Vol. 59, pp. 68-76, 2017.
[10]        H. Che, Z. Wu, R. Kang, C. Yun, Global path planning for explosion-proof robot based on improved ant colony optimization, in Proceeding of, IEEE, pp. 36-40.
[11]        Q. Luo, H. Wang, Y. Zheng, J. He, Research on path planning of mobile robot based on improved ant colony algorithm, Neural Computing and Applications, Vol. 32, No. 6, pp. 1555-1566, 2020.
[12]        G. Raju, J. Zhou, R. A. Kisner, Hierarchical fuzzy control, International journal of control, Vol. 54, No. 5, pp. 1201-1216, 1991.
[13]        M. G. Joo, J. S. Lee, Hierarchical fuzzy control scheme using structured Takagi-Sugeno type fuzzy inference, in Proceeding of, IEEE, pp. 78-83.
[14]        M.-L. Lee, H.-Y. Chung, F.-M. Yu, Modeling of hierarchical fuzzy systems, Fuzzy sets and systems, Vol. 138, No. 2, pp. 343-361, 2003.
[15]        S. Feng, B. Sebastian, P. Ben-Tzvi, A Collision Avoidance Method Based on Deep Reinforcement Learning, Robotics, Vol. 10, No. 2, pp. 73, 2021.
[16]        E. Krell, A. Sheta, A. P. R. Balasubramanian, S. A. King, Collision-Free Autonomous Robot Navigation in Unknown Environments Utilizing PSO for Path Planning, Journal of Artificial Intelligence and Soft Computing Research, Vol. 9, No. 4, pp. 267-282, 2019.
[17]        M. Mohammadi, M. Ghayour, A. Farajpour, Analysis of free vibration sector plate based on elastic medium by using new version of differential quadrature method, Journal of Simulation and Analysis of Novel Technologies in Mechanical Engineering, Vol. 3, No. 2, pp. 47-56, 2010.
[18]        A. Farajpour, M. Danesh, M. Mohammadi, Buckling analysis of variable thickness nanoplates using nonlocal continuum mechanics, Physica E: Low-dimensional Systems and Nanostructures, Vol. 44, No. 3, pp. 719-727, 2011.
[19]        A. Farajpour, M. Mohammadi, A. Shahidi, M. Mahzoon, Axisymmetric buckling of the circular graphene sheets with the nonlocal continuum plate model, Physica E: Low-dimensional Systems and Nanostructures, Vol. 43, No. 10, pp. 1820-1825, 2011.
[20]        N. Ghayour, A. Sedaghat, M. Mohammadi, Wave propagation approach to fluid filled submerged visco-elastic finite cylindrical shells, 2011.
[21]        H. Moosavi, M. Mohammadi, A. Farajpour, S. Shahidi, Vibration analysis of nanorings using nonlocal continuum mechanics and shear deformable ring theory, Physica E: Low-dimensional Systems and Nanostructures, Vol. 44, No. 1, pp. 135-140, 2011.
[22]        A. Farajpour, M. Mohammadi, A. R. Shahidi, M. Mahzoon, Axisymmetric buckling of the circular graphene sheets with the nonlocal continuum plate model, Physica E: Low-dimensional Systems and Nanostructures, Vol. 43, No. 10, pp. 1820-1825, 2011/08/01/, 2011.
[23]        M. Mohammadi, M. Ghayour, A. Farajpour, ANALYSIS OF FREE VIBRATION SECTOR PLATE BASED ON ELASTIC MEDIUM BY USING NEW VERSION OF DIFFERENTIAL QUADRATURE METHOD, JOURNAL OF SIMULATION AND ANALYSIS OF NOVEL TECHNOLOGIES IN MECHANICAL ENGINEERING (JOURNAL OF SOLID MECHANICS IN ENGINEERING), Vol. 3, No. 2, pp. 47-56, 2011. English
[24]        M. Danesh, A. Farajpour, M. Mohammadi, Axial vibration analysis of a tapered nanorod based on nonlocal elasticity theory and differential quadrature method, Mechanics Research Communications, Vol. 39, No. 1, pp. 23-27, 2012.
[25]        A. Farajpour, A. Shahidi, M. Mohammadi, M. Mahzoon, Buckling of orthotropic micro/nanoscale plates under linearly varying in-plane load via nonlocal continuum mechanics, Composite Structures, Vol. 94, No. 5, pp. 1605-1615, 2012.
[26]        M. Mohammadi, M. Goodarzi, M. Ghayour, S. Alivand, Small scale effect on the vibration of orthotropic plates embedded in an elastic medium and under biaxial in-plane pre-load via nonlocal elasticity theory, 2012.
[27]        M. Mohammadi, A. Farajpour, M. Goodarzi, R. Heydarshenas, Levy type solution for nonlocal thermo-mechanical vibration of orthotropic mono-layer graphene sheet embedded in an elastic medium, Journal of Solid Mechanics, Vol. 5, No. 2, pp. 116-132, 2013.
[28]        M. Mohammadi, A. Farajpour, M. Goodarzi, H. Mohammadi, Temperature Effect on Vibration Analysis of Annular Graphene Sheet Embedded on Visco-Pasternak Foundati, Journal of Solid Mechanics, Vol. 5, No. 3, pp. 305-323, 2013.
[29]        M. Mohammadi, M. Ghayour, A. Farajpour, Free transverse vibration analysis of circular and annular graphene sheets with various boundary conditions using the nonlocal continuum plate model, Composites Part B: Engineering, Vol. 45, No. 1, pp. 32-42, 2013.
[30]        M. Mohammadi, M. Goodarzi, M. Ghayour, A. Farajpour, Influence of in-plane pre-load on the vibration frequency of circular graphene sheet via nonlocal continuum theory, Composites Part B: Engineering, Vol. 51, pp. 121-129, 2013.
[31]        S. Asemi, A. Farajpour, H. Asemi, M. Mohammadi, Influence of initial stress on the vibration of double-piezoelectric-nanoplate systems with various boundary conditions using DQM, Physica E: Low-dimensional Systems and Nanostructures, Vol. 63, pp. 169-179, 2014.
[32]        S. Asemi, A. Farajpour, M. Mohammadi, Nonlinear vibration analysis of piezoelectric nanoelectromechanical resonators based on nonlocal elasticity theory, Composite Structures, Vol. 116, pp. 703-712, 2014.
[33]        S. R. Asemi, M. Mohammadi, A. Farajpour, A study on the nonlinear stability of orthotropic single-layered graphene sheet based on nonlocal elasticity theory, Latin American Journal of Solids and Structures, Vol. 11, No. 9, pp. 1515-1540, 2014.
[34]        A. Farajpour, A. Rastgoo, M. Mohammadi, Surface effects on the mechanical characteristics of microtubule networks in living cells, Mechanics Research Communications, Vol. 57, pp. 18-26, 2014.
[35]        M. Goodarzi, M. Mohammadi, A. Farajpour, M. Khooran, Investigation of the effect of pre-stressed on vibration frequency of rectangular nanoplate based on a visco-Pasternak foundation, 2014.
[36]        M. Mohammadi, A. Farajpour, M. Goodarzi, F. Dinari, Thermo-mechanical vibration analysis of annular and circular graphene sheet embedded in an elastic medium, Latin American Journal of Solids and Structures, Vol. 11, pp. 659-682, 2014.
[37]        M. Mohammadi, A. Farajpour, M. Goodarzi, Numerical study of the effect of shear in-plane load on the vibration analysis of graphene sheet embedded in an elastic medium, Computational Materials Science, Vol. 82, pp. 510-520, 2014.
[38]        M. Mohammadi, A. Farajpour, A. Moradi, M. Ghayour, Shear buckling of orthotropic rectangular graphene sheet embedded in an elastic medium in thermal environment, Composites Part B: Engineering, Vol. 56, pp. 629-637, 2014.
[39]        M. Mohammadi, A. Moradi, M. Ghayour, A. Farajpour, Exact solution for thermo-mechanical vibration of orthotropic mono-layer graphene sheet embedded in an elastic medium, Latin American Journal of Solids and Structures, Vol. 11, No. 3, pp. 437-458, 2014.
[40]        H. Asemi, S. Asemi, A. Farajpour, M. Mohammadi, Nanoscale mass detection based on vibrating piezoelectric ultrathin films under thermo-electro-mechanical loads, Physica E: Low-dimensional Systems and Nanostructures, Vol. 68, pp. 112-122, 2015.
[41]        M. Safarabadi, M. Mohammadi, A. Farajpour, M. Goodarzi, Effect of surface energy on the vibration analysis of rotating nanobeam, 2015.
[42]        H. R. Asemi, S. R. Asemi, A. Farajpour, M. Mohammadi, Nanoscale mass detection based on vibrating piezoelectric ultrathin films under thermo-electro-mechanical loads, Physica E: Low-dimensional Systems and Nanostructures, Vol. 68, pp. 112-122, 2015/04/01/, 2015.
[43]        M. Baghani, M. Mohammadi, A. Farajpour, Dynamic and stability analysis of the rotating nanobeam in a nonuniform magnetic field considering the surface energy, International Journal of Applied Mechanics, Vol. 8, No. 04, pp. 1650048, 2016.
[44]        A. Farajpour, M. H. Yazdi, A. Rastgoo, M. Loghmani, M. Mohammadi, Nonlocal nonlinear plate model for large amplitude vibration of magneto-electro-elastic nanoplates, Composite Structures, Vol. 140, pp. 323-336, 2016.
[45]        A. Farajpour, M. Yazdi, A. Rastgoo, M. Mohammadi, A higher-order nonlocal strain gradient plate model for buckling of orthotropic nanoplates in thermal environment, Acta Mechanica, Vol. 227, No. 7, pp. 1849-1867, 2016.
[46]        M. R. Farajpour, A. Rastgoo, A. Farajpour, M. Mohammadi, Vibration of piezoelectric nanofilm-based electromechanical sensors via higher-order non-local strain gradient theory, Micro & Nano Letters, Vol. 11, No. 6, pp. 302-307, 2016.
[47]        M. Mohammadi, M. Safarabadi, A. Rastgoo, A. Farajpour, Hygro-mechanical vibration analysis of a rotating viscoelastic nanobeam embedded in a visco-Pasternak elastic medium and in a nonlinear thermal environment, Acta Mechanica, Vol. 227, No. 8, pp. 2207-2232, 2016.
[48]        M. Goodarzi, M. Mohammadi, M. Khooran, F. Saadi, Thermo-mechanical vibration analysis of FG circular and annular nanoplate based on the visco-pasternak foundation, Journal of Solid Mechanics, Vol. 8, No. 4, pp. 788-805, 2016.
[49]        A. Farajpour, A. Rastgoo, M. Mohammadi, Vibration, buckling and smart control of microtubules using piezoelectric nanoshells under electric voltage in thermal environment, Physica B: Condensed Matter, Vol. 509, pp. 100-114, 2017.
[50]        M. Mohammadi, M. Hosseini, M. Shishesaz, A. Hadi, A. Rastgoo, Primary and secondary resonance analysis of porous functionally graded nanobeam resting on a nonlinear foundation subjected to mechanical and electrical loads, European Journal of Mechanics-A/Solids, Vol. 77, pp. 103793, 2019.
[51]        M. Mohammadi, A. Rastgoo, Nonlinear vibration analysis of the viscoelastic composite nanoplate with three directionally imperfect porous FG core, Structural Engineering and Mechanics, An Int'l Journal, Vol. 69, No. 2, pp. 131-143, 2019.
[52]        M. Mohammadi, A. Rastgoo, Primary and secondary resonance analysis of FG/lipid nanoplate with considering porosity distribution based on a nonlinear elastic medium, Mechanics of Advanced Materials and Structures, Vol. 27, No. 20, pp. 1709-1730, 2020.
Volume 53, Issue 2
June 2022
Pages 169-182
  • Receive Date: 13 April 2022
  • Revise Date: 09 May 2022
  • Accept Date: 14 May 2022
  • First Publish Date: 14 May 2022