[1]           A. Hadi, A. Rastgoo, N. Haghighipour, A. Bolhassani, Numerical modelling of a spheroid living cell membrane under hydrostatic pressure, Journal of Statistical Mechanics: Theory and Experiment, Vol. 2018, No. 8, pp. 083501, 2018.
                                                                                                                [2]           M. Najafzadeh, M. M. Adeli, E. Zarezadeh, A. Hadi, Torsional vibration of the porous nanotube with an arbitrary cross-section based on couple stress theory under magnetic field, Mechanics Based Design of Structures and Machines, pp. 1-15, 2020.
                                                                                                                [3]           A. Barati, A. Hadi, M. Z. Nejad, R. Noroozi, On vibration of bi-directional functionally graded nanobeams under magnetic field, Mechanics Based Design of Structures and Machines, pp. 1-18, 2020.
                                                                                                                [4]           M. M. Khoram, M. Hosseini, A. Hadi, M. Shishehsaz, Bending analysis of bidirectional FGM Timoshenko nanobeam subjected to mechanical and magnetic forces and resting on Winkler–Pasternak foundation, International Journal of Applied Mechanics, Vol. 12, No. 08, pp. 2050093, 2020.
                                                                                                                [5]           C. Kafadar, A. C. Eringen, Micropolar media—I the classical theory, International Journal of Engineering Science, Vol. 9, No. 3, pp. 271-305, 1971.
                                                                                                                [6]           A. C. Eringen, Nonlocal polar elastic continua, International journal of engineering science, Vol. 10, No. 1, pp. 1-16, 1972.
                                                                                                                [7]           A. C. Eringen, 2002, Nonlocal continuum field theories, Springer Science & Business Media,
                                                                                                                [8]           A. C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, Journal of applied physics, Vol. 54, No. 9, pp. 4703-4710, 1983.
                                                                                                                [9]           R. Mindlin, N. Eshel, On first strain-gradient theories in linear elasticity, International Journal of Solids and Structures, Vol. 4, No. 1, pp. 109-124, 1968.
                                                                                                                [10]         R. A. Toupin, Elastic materials with couple-stresses, Archive for Rational Mechanics and Analysis, Vol. 11, No. 1, pp. 385-414, 1962.
                                                                                                                [11]         C. Lim, G. Zhang, J. Reddy, A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation, Journal of the Mechanics and Physics of Solids, Vol. 78, pp. 298-313, 2015.
                                                                                                                [12]         A. Daneshmehr, A. Rajabpoor, A. Hadi, Size dependent free vibration analysis of nanoplates made of functionally graded materials based on nonlocal elasticity theory with high order theories, International Journal of Engineering Science, Vol. 95, pp. 23-35, 2015.
                                                                                                                [13]         S. Pradhan, J. Phadikar, Bending, buckling and vibration analyses of nonhomogeneous nanotubes using GDQ and nonlocal elasticity theory, Structural Engineering and Mechanics, Vol. 33, No. 2, pp. 193-213, 2009.
                                                                                                                [14]         J. Phadikar, S. Pradhan, Variational formulation and finite element analysis for nonlocal elastic nanobeams and nanoplates, Computational materials science, Vol. 49, No. 3, pp. 492-499, 2010.
                                                                                                                [15]         J. K. Phadikar, S. C. Pradhan, Variational formulation and finite element analysis for nonlocal elastic nanobeams and nanoplates, Computational Materials Science, Vol. 49, No. 3, pp. 492-499, 9//, 2010.
                                                                                                                [16]         M. Z. Nejad, A. Hadi, Non-local analysis of free vibration of bi-directional functionally graded Euler–Bernoulli nano-beams, International Journal of Engineering Science, Vol. 105, pp. 1-11, 2016/08/01/, 2016.
                                                                                                                [17]         M. Z. Nejad, A. Hadi, Eringen's non-local elasticity theory for bending analysis of bi-directional functionally graded Euler–Bernoulli nano-beams, International Journal of Engineering Science, Vol. 106, pp. 1-9, 2016/09/01/, 2016.
                                                                                                                [18]         M. Z. Nejad, A. Hadi, A. Rastgoo, Buckling analysis of arbitrary two-directional functionally graded Euler–Bernoulli nano-beams based on nonlocal elasticity theory, International Journal of Engineering Science, Vol. 103, pp. 1-10, 6//, 2016.
                                                                                                                [19]         M. Hosseini, M. Shishesaz, K. N. Tahan, A. Hadi, Stress analysis of rotating nano-disks of variable thickness made of functionally graded materials, International Journal of Engineering Science, Vol. 109, pp. 29-53, 2016.
                                                                                                                [20]         M. M. Adeli, A. Hadi, M. Hosseini, H. H. Gorgani, Torsional vibration of nano-cone based on nonlocal strain gradient elasticity theory, The European Physical Journal Plus, Vol. 132, No. 9, pp. 393, 2017.
                                                                                                                [21]         M. Hosseini, H. H. Gorgani, M. Shishesaz, A. Hadi, Size-dependent stress analysis of single-wall carbon nanotube based on strain gradient theory, International Journal of Applied Mechanics, Vol. 9, No. 06, pp. 1750087, 2017.
                                                                                                                [22]         M. Shishesaz, M. Hosseini, K. N. Tahan, A. Hadi, Analysis of functionally graded nanodisks under thermoelastic loading based on the strain gradient theory, Acta Mechanica, pp. 1-28, 2017.
                                                                                                                [23]         F. Ebrahimi, M. R. Barati, A nonlocal higher-order refined magneto-electro-viscoelastic beam model for dynamic analysis of smart nanostructures, International Journal of Engineering Science, Vol. 107, pp. 183-196, 10//, 2016.
                                                                                                                [24]         F. Ebrahimi, M. R. Barati, A. Dabbagh, A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates, International Journal of Engineering Science, Vol. 107, pp. 169-182, 10//, 2016.
                                                                                                                [25]         F. Ebrahimi, M. R. Barati, A nonlocal strain gradient refined beam model for buckling analysis of size-dependent shear-deformable curved FG nanobeams, Composite Structures, Vol. 159, pp. 174-182, 1/1/, 2017.
                                                                                                                [26]         F. Ebrahimi, M. R. Barati, A. M. Zenkour, A new nonlocal elasticity theory with graded nonlocality for thermo-mechanical vibration of FG nanobeams via a nonlocal third-order shear deformation theory, Mechanics of Advanced Materials and Structures, No. just-accepted, 2017.
                                                                                                                [27]         F. Ebrahimi, M. R. Barati, Vibration analysis of nonlocal beams made of functionally graded material in thermal environment, The European Physical Journal Plus, Vol. 131, No. 8, pp. 279, 2016.
                                                                                                                [28]         F. Ebrahimi, M. R. Barati, Buckling analysis of nonlocal third-order shear deformable functionally graded piezoelectric nanobeams embedded in elastic medium, Journal of the Brazilian Society of Mechanical Sciences and Engineering, pp. 1-16, 2016.
                                                                                                                [29]         F. Ebrahimi, M. R. Barati, Magnetic field effects on buckling behavior of smart size-dependent graded nanoscale beams, The European Physical Journal Plus, Vol. 131, No. 7, pp. 1-14, 2016.
                                                                                                                [30]         F. Ebrahimi, M. R. Barati, Magneto-electro-elastic buckling analysis of nonlocal curved nanobeams, The European Physical Journal Plus, Vol. 131, No. 9, pp. 346, 2016.
                                                                                                                [31]         F. Ebrahimi, M. R. Barati, P. Haghi, Nonlocal thermo-elastic wave propagation in temperature-dependent embedded small-scaled nonhomogeneous beams, The European Physical Journal Plus, Vol. 131, No. 11, pp. 383, 2016.
                                                                                                                [32]         F. Ebrahimi, M. Daman, Analytical investigation of the surface effects on nonlocal vibration behavior of nanosize curved beams, ADVANCES IN NANO RESEARCH, Vol. 5, No. 1, pp. 35-47, 2017.
                                                                                                                [33]         F. Ebrahimi, A. Dabbagh, Nonlocal strain gradient based wave dispersion behavior of smart rotating magneto-electro-elastic nanoplates, Materials Research Express, Vol. 4, No. 2, pp. 025003, 2017.
                                                                                                                [34]         L. Li, Y. Hu, Buckling analysis of size-dependent nonlinear beams based on a nonlocal strain gradient theory, International Journal of Engineering Science, Vol. 97, pp. 84-94, 12//, 2015.
                                                                                                                [35]         A. Farajpour, M. Danesh, M. Mohammadi, Buckling analysis of variable thickness nanoplates using nonlocal continuum mechanics, Physica E: Low-dimensional Systems and Nanostructures, Vol. 44, No. 3, pp. 719-727, 2011.
                                                                                                                [36]         L. Li, X. Li, Y. Hu, Free vibration analysis of nonlocal strain gradient beams made of functionally graded material, International Journal of Engineering Science, Vol. 102, pp. 77-92, 2016.
                                                                                                                [37]         L. Li, Y. Hu, Wave propagation in fluid-conveying viscoelastic carbon nanotubes based on nonlocal strain gradient theory, Computational Materials Science, Vol. 112, Part A, pp. 282-288, 2/1/, 2016.
                                                                                                                [38]         L. Li, Y. Hu, X. Li, Longitudinal vibration of size-dependent rods via nonlocal strain gradient theory, International Journal of Mechanical Sciences, Vol. 115–116, pp. 135-144, 9//, 2016.
                                                                                                                [39]         L. Li, Y. Hu, Nonlinear bending and free vibration analyses of nonlocal strain gradient beams made of functionally graded material, International Journal of Engineering Science, Vol. 107, pp. 77-97, 10//, 2016.
                                                                                                                [40]         L. Li, Y. Hu, Post-buckling analysis of functionally graded nanobeams incorporating nonlocal stress and microstructure-dependent strain gradient effects, International Journal of Mechanical Sciences, Vol. 120, pp. 159-170, 1//, 2017.
                                                                                                                [41]         X. Li, L. Li, Y. Hu, Z. Ding, W. Deng, Bending, buckling and vibration of axially functionally graded beams based on nonlocal strain gradient theory, Composite Structures, Vol. 165, pp. 250-265, 4/1/, 2017.
                                                                                                                [42]         G. Romano, R. Barretta, M. Diaco, F. M. de Sciarra, Constitutive boundary conditions and paradoxes in nonlocal elastic nanobeams, International Journal of Mechanical Sciences, Vol. 121, pp. 151-156, 2017.
                                                                                                                [43]         G. Romano, R. Barretta, Stress-driven versus strain-driven nonlocal integral model for elastic nano-beams, Composites Part B: Engineering, Vol. 114, No. Supplement C, pp. 184-188, 2017/04/01/, 2017.
                                                                                                                [44]         G. Romano, R. Barretta, Comment on the paper “Exact solution of Eringen’s nonlocal integral model for bending of Euler–Bernoulli and Timoshenko beams” by Meral Tuna & Mesut Kirca, International Journal of Engineering Science, Vol. 109, No. Supplement C, pp. 240-242, 2016/12/01/, 2016.
                                                                                                                [45]         J. Fernández-Sáez, R. Zaera, J. A. Loya, J. N. Reddy, Bending of Euler–Bernoulli beams using Eringen’s integral formulation: A paradox resolved, International Journal of Engineering Science, Vol. 99, No. Supplement C, pp. 107-116, 2016/02/01/, 2016.
                                                                                                                [46]         G. Romano, R. Barretta, Nonlocal elasticity in nanobeams: the stress-driven integral model, International Journal of Engineering Science, Vol. 115, No. Supplement C, pp. 14-27, 2017/06/01/, 2017.
                                                                                                                [47]         A. Apuzzo, R. Barretta, R. Luciano, F. Marotti de Sciarra, R. Penna, Free vibrations of Bernoulli-Euler nano-beams by the stress-driven nonlocal integral model, Composites Part B: Engineering, Vol. 123, No. Supplement C, pp. 105-111, 2017/08/15/, 2017.
                                                                                                                [48]         C. W. Lim, G. Zhang, J. N. Reddy, A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation, Journal of the Mechanics and Physics of Solids, Vol. 78, No. Supplement C, pp. 298-313, 2015/05/01/, 2015.
                                                                                                                [49]         L. Li, Y. Hu, Buckling analysis of size-dependent nonlinear beams based on a nonlocal strain gradient theory, International Journal of Engineering Science, Vol. 97, No. Supplement C, pp. 84-94, 2015/12/01/, 2015.
                                                                                                                [50]         L. Li, Y. Hu, L. Ling, Flexural wave propagation in small-scaled functionally graded beams via a nonlocal strain gradient theory, Composite Structures, Vol. 133, No. Supplement C, pp. 1079-1092, 2015/12/01/, 2015.
                                                                                                                [51]         A. Farajpour, M. H. Yazdi, A. Rastgoo, M. Mohammadi, A higher-order nonlocal strain gradient plate model for buckling of orthotropic nanoplates in thermal environment, Acta Mechanica, Vol. 227, No. 7, pp. 1849-1867, 2016.
                                                                                                                [52]         F. Ebrahimi, M. R. Barati, A. Dabbagh, A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates, International Journal of Engineering Science, Vol. 107, No. Supplement C, pp. 169-182, 2016/10/01/, 2016.
                                                                                                                [53]         M. Tuna, M. Kirca, Exact solution of Eringen's nonlocal integral model for vibration and buckling of Euler–Bernoulli beam, International Journal of Engineering Science, Vol. 107, No. Supplement C, pp. 54-67, 2016/10/01/, 2016.
                                                                                                                [54]         M. Tuna, M. Kirca, Exact solution of Eringen's nonlocal integral model for bending of Euler–Bernoulli and Timoshenko beams, International Journal of Engineering Science, Vol. 105, No. Supplement C, pp. 80-92, 2016/08/01/, 2016.
                                                                                                                [55]         F. Ebrahimi, M. R. Barati, Dynamic Modeling of Magneto-electrically Actuated Compositionally Graded Nanosize Plates Lying on Elastic Foundation, Arabian Journal for Science and Engineering, Vol. 42, No. 5, pp. 1977-1997, May 01, 2017.
                                                                                                                [56]         L. Li, X. Li, Y. Hu, Free vibration analysis of nonlocal strain gradient beams made of functionally graded material, International Journal of Engineering Science, Vol. 102, No. Supplement C, pp. 77-92, 2016/05/01/, 2016.
                                                                                                                [57]         L. Li, Y. Hu, Nonlinear bending and free vibration analyses of nonlocal strain gradient beams made of functionally graded material, International Journal of Engineering Science, Vol. 107, No. Supplement C, pp. 77-97, 2016/10/01/, 2016.
                                                                                                                [58]         J. Romanoff, J. N. Reddy, J. Jelovica, Using non-local Timoshenko beam theories for prediction of micro- and macro-structural responses, Composite Structures, Vol. 156, No. Supplement C, pp. 410-420, 2016/11/15/, 2016.
                                                                                                                [59]         F. Ebrahimi, M. R. Barati, Vibration analysis of viscoelastic inhomogeneous nanobeams incorporating surface and thermal effects, Applied Physics A, Vol. 123, No. 1, pp. 5, December 10, 2016.
                                                                                                                [60]         F. Ebrahimi, M. R. Barati, A nonlocal strain gradient refined beam model for buckling analysis of size-dependent shear-deformable curved FG nanobeams, Composite Structures, Vol. 159, No. Supplement C, pp. 174-182, 2017/01/01/, 2017.
                                                                                                                [61]         X.-J. Xu, X.-C. Wang, M.-L. Zheng, Z. Ma, Bending and buckling of nonlocal strain gradient elastic beams, Composite Structures, Vol. 160, No. Supplement C, pp. 366-377, 2017/01/15/, 2017.
                                                                                                                [62]         X. Li, L. Li, Y. Hu, Z. Ding, W. Deng, Bending, buckling and vibration of axially functionally graded beams based on nonlocal strain gradient theory, Composite Structures, Vol. 165, No. Supplement C, pp. 250-265, 2017/04/01/, 2017.
                                                                                                                [63]         L. Li, Y. Hu, Torsional vibration of bi-directional functionally graded nanotubes based on nonlocal elasticity theory, Composite Structures, Vol. 172, No. Supplement C, pp. 242-250, 2017/07/15/, 2017.
                                                                                                                [64]         M. Z. Nejad, P. Fatehi, Exact elasto-plastic analysis of rotating thick-walled cylindrical pressure vessels made of functionally graded materials, International Journal of Engineering Science, Vol. 86, pp. 26-43, 2015.
                                                                                                                [65]         M. Z. Nejad, A. Rastgoo, A. Hadi, Exact elasto-plastic analysis of rotating disks made of functionally graded materials, International Journal of Engineering Science, Vol. 85, pp. 47-57, 2014.
                                                                                                                [66]         Z. Mazarei, M. Nejad, A. Hadi, Thermo-elasto-plastic analysis of thick-walled spherical pressure vessels made of functionally graded materials, International Journal of Applied Mechanics, 2016.
                                                                                                                [67]         M. Nejad, A. Rastgoo, A. Hadi, Effect of Exponentially-Varying Properties on Displacements and Stresses in Pressurized Functionally Graded Thick Spherical Shells with Using Iterative Technique, Journal of Solid Mechanics Vol, Vol. 6, No. 4, pp. 366-377, 2014.
                                                                                                                [68]         M. Ghannad, G. H. Rahimi, M. Z. Nejad, Elastic analysis of pressurized thick cylindrical shells with variable thickness made of functionally graded materials, Composites Part B: Engineering, Vol. 45, No. 1, pp. 388-396, 2013.
                                                                                                                [69]         M. Z. Nejad, M. Jabbari, M. Ghannad, Elastic analysis of FGM rotating thick truncated conical shells with axially-varying properties under non-uniform pressure loading, Composite Structures, Vol. 122, pp. 561-569, 2015.
                                                                                                                [70]         M. Jabbari, M. Z. Nejad, M. Ghannad, Thermo-elastic analysis of axially functionally graded rotating thick cylindrical pressure vessels with variable thickness under mechanical loading, International journal of engineering science, Vol. 96, pp. 1-18, 2015.
                                                                                                                [71]         M. Jabbari, M. Z. Nejad, M. Ghannad, Thermo-elastic analysis of axially functionally graded rotating thick truncated conical shells with varying thickness, Composites Part B: Engineering, Vol. 96, pp. 20-34, 2016.
                                                                                                                [72]         M. Z. Nejad, G. Rahimi, M. Ghannad, Set of field equations for thick shell of revolution made of functionally graded materials in curvilinear coordinate system, Mechanics, Vol. 77, No. 3, pp. 18-26, 2016.
                                                                                                                [73]         M. Ghannad, M. Z. Nejad, Elastic analysis of pressurized thick hollow cylindrical shells with clamped-clamped ends, Mechanics, Vol. 85, No. 5, pp. 11-18, 2016.
                                                                                                                [74]         M. Z. Nejad, G. Rahimi, Deformations and stresses in rotating FGM pressurized thick hollow cylinder under thermal load, Scientific Research and Essays, Vol. 4, No. 3, pp. 131-140, 2009.
                                                                                                                [75]         M. Z. Nejad, G. H. Rahimi, Elastic analysis of FGM rotating cylindrical pressure vessels, Journal of the Chinese institute of engineers, Vol. 33, No. 4, pp. 525-530, 2010.
                                                                                                                [76]         P. Fatehi, M. Z. Nejad, Effects of material gradients on onset of yield in FGM rotating thick cylindrical shells, International Journal of Applied Mechanics, Vol. 6, No. 04, pp. 1450038, 2014.
                                                                                                                [77]         C. Lü, C. W. Lim, W. Chen, Size-dependent elastic behavior of FGM ultra-thin films based on generalized refined theory, International Journal of Solids and Structures, Vol. 46, No. 5, pp. 1176-1185, 2009.
                                                                                                                [78]         M. Lezgy-Nazargah, Fully coupled thermo-mechanical analysis of bi-directional FGM beams using NURBS isogeometric finite element approach, Aerospace Science and Technology, 2015.
                                                                                                                [79]         M. Şimşek, Bi-directional functionally graded materials (BDFGMs) for free and forced vibration of Timoshenko beams with various boundary conditions, Composite Structures, Vol. 133, pp. 968-978, 2015.
                                                                                                                [80]         S. Sahmani, M. M. Aghdam, Size dependency in axial postbuckling behavior of hybrid FGM exponential shear deformable nanoshells based on the nonlocal elasticity theory, Composite Structures, Vol. 166, pp. 104-113, 4/15/, 2017.
                                                                                                                [81]         N. Tutuncu, Stresses in thick-walled FGM cylinders with exponentially-varying properties, Engineering Structures, Vol. 29, No. 9, pp. 2032-2035, 2007.
                                                                                                                [82]         M. Z. Nejad, A. Hadi, A. Farajpour, Consistent couple-stress theory for free vibration analysis of Euler-Bernoulli nano-beams made of arbitrary bi-directional functionally graded materials, Structural Engineering and Mechanics, Vol. 63, No. 2, pp. 161-169, 2017.
                                                                                                                [83]         A. Barati, M. M. Adeli, A. Hadi, Static torsion of bi-directional functionally graded microtube based on the couple stress theory under magnetic field, International Journal of Applied Mechanics, Vol. 12, No. 02, pp. 2050021, 2020.
                                                                                                                [84]         M. A. Steinberg, Materials for aerospace, Sci. Am.;(United States), Vol. 255, No. 4, 1986.
                                                                                                                [85]         A. Hadi, M. Z. Nejad, M. Hosseini, Vibrations of three-dimensionally graded nanobeams, International Journal of Engineering Science, Vol. 128, pp. 12-23, 2018/07/01/, 2018.
                                                                                                                [86]         M. R. Farajpour, A. Rastgoo, A. Farajpour, M. Mohammadi, Vibration of piezoelectric nanofilm‐based electromechanical sensors via higher‐order non‐local strain gradient theory, Micro & Nano Letters, Vol. 11, No. 6, pp. 302-307, 2016.
                                                                                                                [87]         A. Hadi, M. Z. Nejad, A. Rastgoo, M. Hosseini, Buckling analysis of FGM Euler-Bernoulli nano-beams with 3D-varying properties based on consistent couple-stress theory, Steel and Composite Structures, An International Journal, Vol. 26, No. 6, pp. 663-672, 2018.