[1] M. Tisserand, 2014, Aromatherapy vs MRSA: Antimicrobial essential oils to combat bacterial infection, including the superbug, Singing Dragon,
[2] S. Z. Mirdeilami, H. Barani, M. Mazandarani, G. A. Heshmati, Ethnopharmacological survey of medicinal plants in Maraveh Tappeh region, north of Iran, 2011.
[3] F. Sefidkon, L. Sadeghzadeh, M. Teymouri, F. ASGARI, S. AHMADI, Antimicrobial effects of the essential oils of two Satureja species (S. Khuzistanica Jamzad and S. bachtiarica Bunge) in two harvesting time, 2007.
[4] F. Sefidkon, Z. Jamzad, Chemical composition of the essential oil of three Iranian Satureja species (S. mutica, S. macrantha and S. intermedia), Food chemistry, Vol. 91, No. 1, pp. 1-4, 2005.
[5] O. Yamamoto, Influence of particle size on the antibacterial activity of zinc oxide, International Journal of Inorganic Materials, Vol. 3, No. 7, pp. 643-646, 2001.
[6] M. Heinlaan, A. Ivask, I. Blinova, H.-C. Dubourguier, A. Kahru, Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus, Chemosphere, Vol. 71, No. 7, pp. 1308-1316, 2008.
[7] R. Rawashdeh, Y. Haik, Antibacterial mechanisms of metallic nanoparticles: a review, Dynamic Biochemistry, Process Biotechnology and Molecular Biology, Vol. 3, No. 2, pp. 12-20, 2009.
[8] I. Matai, A. Sachdev, P. Dubey, S. U. Kumar, B. Bhushan, P. Gopinath, Antibacterial activity and mechanism of Ag–ZnO nanocomposite on S. aureus and GFP-expressing antibiotic resistant E. coli, Colloids and Surfaces B: Biointerfaces, Vol. 115, pp. 359-367, 2014.
[9] A. Salehzadeh, L. Asadpour, A. S. Naeemi, E. Houshmand, Antimicrobial activity of methanolic extracts of Sambucus ebulus and Urtica dioica against clinical isolates of methicillin resistant Staphylococcus aureus, African Journal of Traditional, Complementary and Alternative Medicines, Vol. 11, No. 5, pp. 38-40, 2014.
[10] J. A. Lindsay, Evolution of Staphylococcus aureus and MRSA during outbreaks, Infection, Genetics and Evolution, Vol. 21, pp. 548-553, 2014.
[11] R. H. Deurenberg, C. Vink, S. Kalenic, A. Friedrich, C. Bruggeman, E. Stobberingh, The molecular evolution of methicillin-resistant Staphylococcus aureus, Clinical Microbiology and Infection, Vol. 13, No. 3, pp. 222-235, 2007.
[12] G. Młynarczyk, M. Kochman, M. Ławrynowicz, P. Fordymacki, A. Młynarczyk, J. Jeljaszewicz, Coagulase-negative variants of methicillin-resistant Staphylococcus aureus subsp. aureus strains isolated from hospital specimens, Zentralblatt für Bakteriologie, Vol. 288, No. 3, pp. 373-381, 1998.
[13] A. Sharifi, M. Naghmachi, S. Bahrami, Antimicrobial activities of Dorema auchri, 2011.
[14] F. Pourebrahim, M. Ghaedi, K. Dashtian, S. Kheirandish, R. Jannesar, V. Pezeshkpour, Preparation of chitosan functionalized end‐capped Ag‐NPs and composited with Fe3O4‐NPs: Controlled release to pH‐responsive delivery of progesterone and antibacterial activity against pseudomonas aeruginosa (PAO‐1), Applied Organometallic Chemistry, Vol. 32, No. 1, pp. e3921, 2018.
[15] R. Gattringer, M. Nikš, R. Ostertág, K. Schwarz, H. Medvedovic, W. Graninger, A. Georgopoulos, Evaluation of MIDITECH automated colorimetric MIC reading for antimicrobial susceptibility testing, Journal of antimicrobial chemotherapy, Vol. 49, No. 4, pp. 651-659, 2002.
[16] H. T. Yalcın, M. O. Ozen, B. Gocmen, A. Nalbantsoy, Effect of ottoman viper (Montivipera xanthina (Gray, 1849)) venom on various cancer cells and on microorganisms, Cytotechnology, Vol. 66, No. 1, pp. 87-94, 2014.
[17] M. Zaidan, A. Noor Rain, A. Badrul, A. Adlin, A. Norazah, I. Zakiah, In vitro screening of five local medicinal plants for antibacterial activity using disc diffusion method, Trop biomed, Vol. 22, No. 2, pp. 165-170, 2005.
[18] S. Stefani, D. R. Chung, J. A. Lindsay, A. W. Friedrich, A. M. Kearns, H. Westh, F. M. MacKenzie, Meticillin-resistant Staphylococcus aureus (MRSA): global epidemiology and harmonisation of typing methods, International journal of antimicrobial agents, Vol. 39, No. 4, pp. 273-282, 2012.
[19] J. Hadian, M. Akramian, H. Heydari, H. Mumivand, B. Asghari, Composition and in vitro antibacterial activity of essential oils from four Satureja species growing in Iran, Natural product research, Vol. 26, No. 2, pp. 98-108, 2012.
[20] N. Jalalvandi, A. Bahador, B. Zahedi, H. Saghi, D. Esmaeili, The study of inhibitory effects of satureja khuzestanica essence against mexa and mexr efflux genes ofpseudomonas aeruginosa by rt-pcr, International Journal of Biotechnology, Vol. 4, No. 1, pp. 1-8, 2015.
[21] A. Azam, A. S. Ahmed, M. Oves, M. S. Khan, S. S. Habib, A. Memic, Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study, International journal of nanomedicine, Vol. 7, pp. 6003, 2012.
[22] K. R. Raghupathi, R. T. Koodali, A. C. Manna, Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles, Langmuir, Vol. 27, No. 7, pp. 4020-4028, 2011.