THE RADIAL POINT INTERPOLATION METHOD IN THE BENDING ANALYSIS OF SYMMETRIC LAMINATES USING HSDTS

Document Type : Research Paper

Authors

1 INEGI – Institute of Science and Innovation in Mechanical and Industrial Engineering

2 School of Engineering, Polytechnic of Porto (ISEP)

3 Faculty of Engineering, University of Porto (FEUP), Department of Mechanical Engineering

Abstract

The bending analysis of composite structures is usually performed using the Finite Element Method (FEM), which is also used in many fields of engineering. However, other efficient, accurate, and robust numerical methods can be alternatives to FEM’s widespread use. This work focus on a meshless discretization technique - the Radial Point Interpolation Method (RPIM) – which only requires an unstructured nodal distribution to discretize the problem domain. The numerical integration of the Galerkin weak form governing the plate’s bending problem is performed using a background integration mesh. The nodal connectivity is enforced using the ‘influence-domain’ concept which is based on a radial search of nodes closer to an integration point. Thus, in this work, the RPIM is used to analyse the bending behaviour of symmetric cross-ply composite laminated plates using equivalent single layer (ESL) formulations, following different transverse high-order shear deformation theories (HSDTs). Varying the plate’s geometry and stacking sequences, the applied loads, or the plate model, several composite laminated plates are analysed. In the end, the meshless solutions are compared with analytical solutions available in the literature. The accuracy of the meshless approach is proved and several new numerical solutions for the bending of symmetric laminates are proposed.

Keywords

[1]      S. H. M. Sadek, J. Belinha, M. P. L. Parente, R. M. Natal Jorge, J. M. A. C. de Sá, and A. J. M. Ferreira, “The analysis of composite laminated beams using a 2D interpolating meshless technique,” Acta Mech. Sin., vol. 34, no. 1, pp. 99–116, 2018, doi: 10.1007/s10409-017-0701-8.
[2]      M. M. Khoram, M. Hosseini, A. Hadi, and M. Shishehsaz, “Bending Analysis of Bidirectional FGM Timoshenko Nanobeam Subjected to Mechanical and Magnetic Forces and Resting on Winkler–Pasternak Foundation,” Int. J. Appl. Mech., vol. 12, no. 08, p. 2050093, Sep. 2020, doi: 10.1142/S1758825120500933.
[3]      J. C. Steuben, A. P. Iliopoulos, and J. G. Michopoulos, “Discrete element modeling of particle-based additive manufacturing processes,” Comput. Methods Appl. Mech. Eng., vol. 305, pp. 537–561, 2016, doi: 10.1016/j.cma.2016.02.023.
[4]      A. Barati, A. Hadi, M. Z. Nejad, and R. Noroozi, “On vibration of bi-directional functionally graded nanobeams under magnetic field,” Mech. Based Des. Struct. Mach., pp. 1–18, Feb. 2020, doi: 10.1080/15397734.2020.1719507.
[5]      M. Hosseini, M. Shishesaz, and A. Hadi, “Thermoelastic analysis of rotating functionally graded micro/nanodisks of variable thickness,” Thin-Walled Struct., vol. 134, no. October 2018, pp. 508–523, 2019, doi: 10.1016/j.tws.2018.10.030.
[6]      M. Shishesaz, M. Hosseini, K. Naderan Tahan, and A. Hadi, “Analysis of functionally graded nanodisks under thermoelastic loading based on the strain gradient theory,” Acta Mech., vol. 228, no. 12, pp. 4141–4168, 2017, doi: 10.1007/s00707-017-1939-8.
[7]      M. Gharibi, M. Zamani Nejad, and A. Hadi, “Elastic analysis of functionally graded rotating thick cylindrical pressure vessels with exponentially-varying properties using power series method of Frobenius,” J. Comput. Appl. Mech., vol. 48, no. 1, pp. 89–98, 2017, doi: 10.22059/jcamech.2017.233633.143.
[8]      M. Zamani Nejad, M. Jabbari, and A. Hadi, “A review of functionally graded thick cylindrical and conical shells,” J. Comput. Appl. Mech., vol. 48, no. 2, pp. 357–370, 2017, doi: 10.22059/jcamech.2017.247963.220.
[9]      N. J. Pagano and H. J. Hatfield, “Elastic Behavior of Multilayered Bidirectional Composites,” AIAA J., vol. 10, no. 7, pp. 931–933, 1972, doi: 10.2514/3.50249.
[10]    a J. M. Ferreira, “Analysis of Composite Plates Using a Layerwise Theory and Multiquadrics Discretization,” Mech. Adv. Mater. Struct., vol. 12, no. 2, pp. 99–112, 2005, [Online]. Available: http://dx.doi.org/10.1080/15376490490493952.
[11]    L. Iurlaro, M. Gherlone, M. Di Sciuva, and A. Tessler, “Refined Zigzag Theory for laminated composite and sandwich plates derived from Reissner’s Mixed Variational Theorem,” Compos. Struct., vol. 133, pp. 809–817, 2015, doi: 10.1016/j.compstruct.2015.08.004.
[12]    E. Reissner, “On the theory of transverse bending of elastic plates,” Int. J. Solids Struct., vol. 12, no. 8, pp. 545–554, 1976.
[13]    E. Reissner, “A consistent treatment of transverse shear deformations in laminated anisotropic plates,” AIAA J., vol. 10, no. 5, pp. 716–718, 1972, doi: http://dx.doi.org/10.2514/3.50194.
[14]    E. Reissner, “The effect of transverse shear deformations on the bending of elastic plates,” J. Appl. Mech, vol. 12, pp. A69–A77, 1945.
[15]    R. D. Mindlin, “Influence of Rotatory Inertia and Shear on Flexural Motions of Isotropic, Elastic Plates,” J. Appl. Mech., no. 18, pp. 31–38, 1951.
[16]    T. N. Nguyen, C. H. Thai, and H. Nguyen-Xuan, “On the general framework of high order shear deformation theories for laminated composite plate structures: A novel unified approach,” Int. J. Mech. Sci., vol. 110, pp. 242–255, 2016, doi: 10.1016/j.ijmecsci.2016.01.012.
[17]    A. J. M. Ferreira, C. M. C. Roque, and P. a. L. S. Martins, “Analysis of composite plates using higher-order shear deformation theory and a finite point formulation based on the multiquadric radial basis function method,” Compos. Part B Eng., vol. 34, no. 7, pp. 627–636, 2003, doi: 10.1016/S1359-8368(03)00083-0.
[18]    J.N. Reddy, “Mechanics of laminated composite plates and shells: theory and analysis.” CRC Press LLC, Boca Raton, Florida, 2004, doi: 10.1007/978-1-4471-0095-9.
[19]    G. Shi, “A new simple third-order shear deformation theory of plates,” Int. J. Solids Struct., vol. 44, no. 13, pp. 4399–4417, 2007, doi: 10.1016/j.ijsolstr.2006.11.031.
[20]    S. A. Ambartsumian, “On the theory of bending of anisotropic plates and shallow shells,” J. Appl. Math. Mech., vol. 24, no. 2, pp. 500–514, Jan. 1960, doi: 10.1016/0021-8928(60)90052-6.
[21]    M. Touratier, “An efficient standard plate theory,” Int. J. Eng. Sci., vol. 29, no. 8, pp. 901–916, 1991.
[22]    M. Karama, K. S. Afaq, and S. Mistou, “A new theory for laminated composite plates,” Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., vol. 223, no. 2, pp. 53–62, 2009, doi: 10.1243/14644207JMDA189.
[23]    M. Aydogdu, “A new shear deformation theory for laminated composite plates,” Compos. Struct. J., no. 89, pp. 94–101, 2008.
[24]    K. P. Soldatos, “A transverse shear deformation theory for homogeneous monoclinic plates,” Acta Mech., vol. 94, no. 3–4, pp. 195–220, 1992.
[25]    N. El, A. Tounsi, N. Ziane, I. Mechab, E. Abbes, and A. Bedia, “A new hyperbolic shear deformation theory for buckling and vibration of functionally graded sandwich plate,” Int. J. Mech. Sci., vol. 53, no. 4, pp. 237–247, 2011, doi: 10.1016/j.ijmecsci.2011.01.004.
[26]    J. Belinha, Meshless Methods in Biomechanics: Bone Tissue Remodelling Analysis. Porto: Springer International Publishing, 2014.
[27]    J. Belinha, A. L. Araújo, A. J. M. Ferreira, L. M. J. S. Dinis, and R. M. N. Jorge, “The analysis of laminated plates using distinct advanced discretization meshless techniques,” Compos. Struct., vol. 143, pp. 165–179, 2016, doi: 10.1016/j.compstruct.2016.02.021.
[28]    R. A. Gingold and J. J. Monaghan, “Smoothed particle hydrodynamics: theory and application to non-spherical stars,” Mon. Not. R. Astron. Soc., vol. 181, no. 3, pp. 375–389, 1977, doi: 10.1093/mnras/181.3.375.
[29]    T. Belytschko, Y. Y. Lu, and L. Gu, “Element-free Galerkin methods,” International Journal for Numerical Methods in Engineering, vol. 37, no. 2. pp. 229–256, 1994, doi: 10.1002/nme.1620370205.
[30]    S. Viana, D. Rodger, and H. Lai, “Overview of meshless methods,” ICS Newsl., vol. 14, no. 2, p. 4, 2007, [Online]. Available: http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Overview+of+Meshless+Methods#6.
[31]    W. K. Liu, S. Jun, S. Li, J. Adee, and T. Belytschko, “Reproducing kernel particle methods for structural dynamics,” Int. J. Numer. Methods Eng., vol. 38, no. 10, pp. 1655–1679, 1995, doi: 10.1002/nme.1620381005.
[32]    S. N. Atluri and T. Zhu, “A new Meshless Local Petrov-Galerkin (MLPG) approach in computational mechanics,” Comput. Mech., vol. 22, no. 2, pp. 117–127, 1998.
[33]    G. R. Liu and Y. T. Gu, “A point interpolation method for two-dimensional solids,” Int. J. Numer. Methods Eng., vol. 50, no. 4, pp. 937–951, 2001.
[34]    G. R. Liu, “A point assembly method for stress analysis for two-dimensional solids,” Int. J. Solids Struct., vol. 39, no. 1, pp. 261–276, 2001.
[35]    J. G. Wang and G. R. Liu, “A point interpolation meshless method based on radial basis functions,” Int. J. Numer. Methods Eng., vol. 54, no. 11, pp. 1623–1648, 2002.
[36]    L. M. J. S. Dinis, R. M. N. Jorge, and J. Belinha, “Analysis of 3D solids using the natural neighbour radial point interpolation method,” Comput. Methods Appl. Mech. Eng., vol. 196, no. 13–16, pp. 2009–2028, 2007, doi: 10.1016/j.cma.2006.11.002.
[37]    P. Krysl and T. Belytschko, “Analysis of Thin Plates by the Element-Free Galerkin Method,” Comput. Mech., vol. 17, no. 1–2, pp. 26–35, 1995.
[38]    J. Belinha and L. Dinis, “Analysis of plates and laminates using the element-free Galerkin method,” Comput. Struct., vol. 84, no. 22, pp. 1547–1559, 2006.
[39]    J. Belinha, “Nonlinear analysis of plates and laminates using the element free Galerkin method,” Compos. Struct., vol. 78, no. 3, pp. 337–350, 2007, doi: 10.1016/j.compstruct.2005.10.007.
[40]    K. Y. Dai, G. R. Liu, K. M. Lim, and X. L. Chen, “A mesh-free method for static and free vibration analysis of shear deformable laminated composite plates,” J. Sound Vib., vol. 269, no. 3–5, pp. 633–652, 2004, doi: 10.1016/S0022-460X(03)00089-0.
[41]    B. M. Donning and W. K. Liu, “Meshless methods for shear-deformable beams and plates,” Comput. Methods Appl. Mech. Eng., vol. 152, no. 1, pp. 47–71, 1998.
[42]    M. Levinson, “An accurate simple theory of the statics and dynamics of elastic plates,” Mech. Res. Commun, no. 7, pp. 343–350, 1980.
[43]    M. Aydogdu, “A new shear deformation theory for laminated composite plates,” Compos. Struct., vol. 89, no. 1, pp. 94–101, 2009, doi: 10.1016/j.compstruct.2008.07.008.
[44]    S. Xiang, G. Li, W. Zhang, and M. Yang, “A meshless local radial point collocation method for free vibration analysis of laminated composite plates,” Compos. Struct., vol. 93, no. 2, pp. 280–286, 2011, doi: 10.1016/j.compstruct.2010.09.018.
[45]    A. J. M. Ferreira, “A formulation of the multiquadric radial basis function method for the analysis of laminated composite plates,” Compos. Struct., vol. 59, no. 3, pp. 385–392, 2003.
[46]    A. J. M. Ferreira, “Static analysis of functionally graded plates using third-order shear deformation theory and a meshless method,” Compos. Struct., vol. 69, no. 4, pp. 449–457, 2005, doi: 10.1016/j.compstruct.2004.08.003.
[47]    A. J. M. Ferreira, C. M. C. Roque, R. M. N. Jorge, G. E. Fasshauer, and R. C. Batra, “Analysis of Functionally Graded Plates by a Robust Meshless Method,” Mech. Adv. Mater. Struct., vol. 14, no. 8, pp. 577–587, 2007, doi: 10.1080/15376490701672732.
[48]    C. Wu and K. Chiu, “RMVT-based meshless collocation and element-free Galerkin methods for the quasi-3D free vibration analysis of multilayered composite and FGM plates,” Compos. Struct., vol. 93, no. 5, pp. 1433–1448, 2011, doi: 10.1016/j.compstruct.2010.11.015.
[49]    D. F. Gilhooley and M. A. Mccarthy, “Analysis of thick functionally graded plates by using higher-order shear and normal deformable plate theory and MLPG method with radial basis functions,” Compos. Struct., vol. 80, no. 4, pp. 539–552, 2007, doi: 10.1016/j.compstruct.2006.07.007.
[50]    J. R. Xiao, D. F. Gilhooley, and M. A. Mccarthy, “Analysis of thick composite laminates using a higher-order shear and normal deformable plate theory ( HOSNDPT ) and a meshless method,” Compos. Part B Eng., vol. 39, no. 2, pp. 414–427, 2008, doi: 10.1016/j.compositesb.2006.12.009.
[51]    L. M. J. S. Dinis, R. M. Natal Jorge, and J. Belinha, “Analysis of plates and laminates using the natural neighbour radial point interpolation method,” Eng. Anal. Bound. Elem., vol. 32, no. 3, pp. 267–279, 2008, doi: 10.1016/j.enganabound.2007.08.006.
[52]    J. Belinha, L. M. J. S. Dinis, and R. M. N. Jorge, “The Natural Neighbour Radial Point Interpolation Method: Solid Mechanics and Mechanobiology Applications,” Fac. Eng. da Univ. do Porto, 2010.
[53]    R. L. Hardy, “Theory and applications of the multiquadric-biharmonic method,” Comput. Math. Applic., vol. 19, no. 8/9, pp. 163–208, 1990, doi: 10.1017/CBO9781107415324.004.
[54]    M. V. V. Murthy, “An improved transverse shear deformation theory for laminated anisotropic plates,” NASA Tech. Pap. 1903, no. November, 1981.
[55]    Z. Kaczkowski, Plates. In Statical calculations. Warszawa (in Polish): Arkady, 1968.
[56]    V. Panc, Theories of elastic plates, 1st ed. Prague: Academia, 1975.
[57]    A. Idlbi, M. Karama, and M. Touratier, “Comparison of various laminated plate theories,” Compos. Struct., vol. 37, no. 2, pp. 173–184, 1997, [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0263822397800104.
[58]    J. L. Mantari, A. S. Oktem, and C. Guedes Soares, “A new higher order shear deformation theory for sandwich and composite laminated plates,” Compos. Part B Eng., vol. 43, no. 3, pp. 1489–1499, 2012, doi: 10.1016/j.compositesb.2011.07.017.
[59]    X. Wang and G. Shi, “A refined laminated plate theory accounting for the third-order shear deformation and interlaminar transverse stress continuity,” Appl. Math. Model., vol. 39, no. 18, pp. 5659–5680, 2015, doi: 10.1016/j.apm.2015.01.030.
[60]    D. E. S. Rodrigues, J. Belinha, F. M. A. Pires, L. M. J. S. Dinis, and R. M. N. Jorge, “Homogenization technique for heterogeneous composite materials using meshless methods,” Eng. Anal. Bound. Elem., 2018, doi: 10.1016/j.enganabound.2017.12.012.
[61]    L. D. C. Ramalho, R. D. S. G. Campilho, J. Belinha, and L. F. M. da Silva, “Static strength prediction of adhesive joints: A review,” Int. J. Adhes. Adhes., vol. 96, p. 102451, 2020, doi: https://doi.org/10.1016/j.ijadhadh.2019.102451.
Volume 52, Issue 4
December 2021
Pages 682-716
  • Receive Date: 10 May 2021
  • Revise Date: 02 July 2021
  • Accept Date: 16 September 2021
  • First Publish Date: 01 December 2021