Physical and chemical properties of nano-liposome, application in nano medicine

Document Type : Review Paper


1 Nanoscience and Nanotechnology Research Center, University of Kashan, Kashan, Iran

2 Institute of technology, University of Linköping, Linköping, Sweden

3 Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran


The liposome is derived from two Greek roots: 'Lipo' meaning fat and 'Some' meaning structure. Liposomes can be made from natural phospholipids and cholesterol and, if necessary, other additives. Liposomes were first discovered by Bangham in 1961 due to their simple, self-fulfilling structure and low cost. Liposomes are spherical vesicles with a membrane composed of bilayer phospholipids that are used to release drugs or genetic material into the cell. Current research is focused on liposome technology based on the preparation and development of long-circulating liposomes, lipid components' changing, and vesicles' charge amount. Liposomes, in addition to pharmaceutical carriers, are used in cutaneous, respiratory, food industries, injectable, and in genetic engineering and diagnostic applications. This paper reviews the physical and chemical characteristics, structure, construction methods, and applications of nanoliposomes in various uses as drug carriers, including the treatment of specific diseases.


[1]          A. Barati, M. M. Adeli, A. Hadi, Static torsion of bi-directional functionally graded microtube based on the couple stress theory under magnetic field, International Journal of Applied Mechanics, Vol. 12, No. 02, pp. 2050021, 2020.
[2]          V. Eskandari, A. Hadi, Review of the application and mechanism of surface enhanced raman spectroscopy (sers) as biosensor for the study of biological and chemical analyzes, Journal of Computational Applied Mechanics, Vol. 51, No. 2, pp. 501-509, 2020.
[3]          A. Hadi, A. Rastgoo, A. Bolhassani, N. Haghighipour, Effects of stretching on molecular transfer from cell membrane by forming pores, Soft Materials, Vol. 17, No. 4, pp. 391-399, 2019.
[4]          A. Hadi, A. Rastgoo, N. Haghighipour, A. Bolhassani, Numerical modelling of a spheroid living cell membrane under hydrostatic pressure, Journal of Statistical Mechanics: Theory and Experiment, Vol. 2018, No. 8, pp. 083501, 2018.
[5]          A. Hadi, A. Rastgoo, N. Haghighipour, A. Bolhassani, F. Asgari, S. Soleymani, Enhanced gene delivery in tumor cells using chemical carriers and mechanical loadings, Plos one, Vol. 13, No. 12, pp. e0209199, 2018.
[6]          M. Hosseini, A. Hadi, A. Malekshahi, M. Shishesaz, A review of size-dependent elasticity for nanostructures, Journal of Computational Applied Mechanics, Vol. 49, No. 1, pp. 197-211, 2018.
[7]          A. Papachristos, N. Pippa, K. Ioannidis, G. Sivolapenko, C. Demetzos, Liposomal forms of anticancer agents beyond anthracyclines: present and future perspectives, Journal of liposome research, Vol. 25, No. 2, pp. 166-173, 2015.
[8]          I. E. Santo, R. Campardelli, E. C. Albuquerque, S. A. V. De Melo, E. Reverchon, G. Della Porta, Liposomes size engineering by combination of ethanol injection and supercritical processing, Journal of pharmaceutical sciences, Vol. 104, No. 11, pp. 3842-3850, 2015.
[9]          M. Attia, E. A. Essa, R. M. Zaki, A. A. Elkordy, An overview of the antioxidant effects of ascorbic acid and alpha lipoic acid (in liposomal forms) as adjuvant in cancer treatment, Antioxidants, Vol. 9, No. 5, pp. 359, 2020.
[10]        Y. Caliskan, A. D. Dalgic, S. Gerekci, E. A. Gulec, A. Tezcaner, C. Ozen, D. Keskin, A new therapeutic combination for osteosarcoma: Gemcitabine and Clofazimine co-loaded liposomal formulation, International journal of pharmaceutics, Vol. 557, pp. 97-104, 2019.
[11]        M. K. Riaz, M. A. Riaz, X. Zhang, C. Lin, K. H. Wong, X. Chen, G. Zhang, A. Lu, Z. Yang, Surface functionalization and targeting strategies of liposomes in solid tumor therapy: A review, International journal of molecular sciences, Vol. 19, No. 1, pp. 195, 2018.
[12]        A. D. Bangham, M. M. Standish, J. C. Watkins, Diffusion of univalent ions across the lamellae of swollen phospholipids, Journal of molecular biology, Vol. 13, No. 1, pp. 238-IN27, 1965.
[13]        G. Sessa, G. Weissmann, Phospholipid spherules (liposomes) as a model for biological membranes, Journal of lipid research, Vol. 9, No. 3, pp. 310-318, 1968.
[14]        M. Mozafari, Nanoliposomes: preparation and analysis,  in: Liposomes, Eds., pp. 29-50: Springer, 2010.
[15]        G. Bozzuto, A. Molinari, Liposomes as nanomedical devices, International journal of nanomedicine, Vol. 10, pp. 975, 2015.
[16]        Y. Malam, M. Loizidou, A. M. Seifalian, Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer, Trends in pharmacological sciences, Vol. 30, No. 11, pp. 592-599, 2009.
[17]        M. L. Etheridge, S. A. Campbell, A. G. Erdman, C. L. Haynes, S. M. Wolf, J. McCullough, The big picture on nanomedicine: the state of investigational and approved nanomedicine products, Nanomedicine: nanotechnology, biology and medicine, Vol. 9, No. 1, pp. 1-14, 2013.
[18]        U. Prabhakar, H. Maeda, R. K. Jain, E. M. Sevick-Muraca, W. Zamboni, O. C. Farokhzad, S. T. Barry, A. Gabizon, P. Grodzinski, D. C. Blakey, Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology, AACR, 2013.
[19]        B. Felice, M. P. Prabhakaran, A. P. Rodriguez, S. Ramakrishna, Drug delivery vehicles on a nano-engineering perspective, Materials Science and Engineering: C, Vol. 41, pp. 178-195, 2014.
[20]        K. Morigaki, P. Walde, M. Misran, B. H. Robinson, Thermodynamic and kinetic stability. Properties of micelles and vesicles formed by the decanoic acid/decanoate system, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 213, No. 1, pp. 37-44, 2003.
[21]        L. D. Mayer, M. B. Bally, P. R. Cullis, R. S. Ginsberg, G. N. Mitilenes, Liposomal antineoplastic agent compositions, Google Patents, 1998.
[22]        N. Dos Santos, K. A. Cox, C. A. McKenzie, F. van Baarda, R. C. Gallagher, G. Karlsson, K. Edwards, L. D. Mayer, C. Allen, M. B. Bally, pH gradient loading of anthracyclines into cholesterol-free liposomes: enhancing drug loading rates through use of ethanol, Biochimica ET Biophysica Acta (BBA)-Biomembranes, Vol. 1661, No. 1, pp. 47-60, 2004.
[23]        M. T. Fatima, Z. Islam, E. Ahmad, G. E. Barreto, G. M. Ashraf, Ionic gradient liposomes: Recent advances in the stable entrapment and prolonged released of local anesthetics and anticancer drugs, Biomedicine & Pharmacotherapy, Vol. 107, pp. 34-43, 2018.
[24]        M. R. Mozafari, Liposomes: an overview of manufacturing techniques, Cellular and Molecular Biology Letters, Vol. 10, No. 4, pp. 711, 2005.
[25]        T. O. Olusanya, R. R. Haj Ahmad, D. M. Ibegbu, J. R. Smith, A. A. Elkordy, Liposomal drug delivery systems and anticancer drugs, Molecules, Vol. 23, No. 4, pp. 907, 2018.
[26]        A. K. Al-Asmari, Z. Ullah, A. Al Balowi, M. Islam, In vitro determination of the efficacy of scorpion venoms as anti-cancer agents against colorectal cancer cells: a nano-liposomal delivery approach, International journal of nanomedicine, Vol. 12, pp. 559, 2017.
[27]        A. A. Khan, K. S. Allemailem, S. A. Almatroodi, A. Almatroudi, A. H. Rahmani, Recent strategies towards the surface modification of liposomes: an innovative approach for different clinical applications, 3 Biotech, Vol. 10, No. 4, pp. 1-15, 2020.
[28]        T. M. Taylor, J. Weiss, P. M. Davidson, B. D. Bruce, Liposomal nanocapsules in food science and agriculture, Critical reviews in food science and nutrition, Vol. 45, No. 7-8, pp. 587-605, 2005.
[29]        M. Reza Mozafari, C. Johnson, S. Hatziantoniou, C. Demetzos, Nanoliposomes and their applications in food nanotechnology, Journal of liposome research, Vol. 18, No. 4, pp. 309-327, 2008.
[30]        S. Emami, S. Azadmard-Damirchi, S. H. Peighambardoust, H. Valizadeh, J. Hesari, Liposomes as carrier vehicles for functional compounds in food sector, Journal of Experimental Nanoscience, Vol. 11, No. 9, pp. 737-759, 2016.
[31]        B. Farhang, Encapsulation of bioactive compounds in liposomes prepared with milk fat globule membrane-derived phospholipids,  Thesis, 2013.
[32]        M. Fathi, M. R. Mozafari, M. Mohebbi, Nanoencapsulation of food ingredients using lipid based delivery systems, Trends in food science & technology, Vol. 23, No. 1, pp. 13-27, 2012.
[33]        M. E. Nik, B. Malaekeh-Nikouei, M. Amin, M. Hatamipour, M. Teymouri, H. R. Sadeghnia, M. Iranshahi, M. R. Jaafari, Liposomal formulation of Galbanic acid improved therapeutic efficacy of pegylated liposomal Doxorubicin in mouse colon carcinoma, Scientific reports, Vol. 9, No. 1, pp. 1-15, 2019.
[34]        M. Miyazaki, E. Yuba, H. Hayashi, A. Harada, K. Kono, Hyaluronic acid-based pH-sensitive polymer-modified liposomes for cell-specific intracellular drug delivery systems, Bioconjugate chemistry, Vol. 29, No. 1, pp. 44-55, 2018.
[35]        M. A. Aghdam, R. Bagheri, J. Mosafer, B. Baradaran, M. Hashemzaei, A. Baghbanzadeh, M. de la Guardia, A. Mokhtarzadeh, Recent advances on thermosensitive and pH-sensitive liposomes employed in controlled release, Journal of Controlled Release, Vol. 315, pp. 1-22, 2019.
[36]        Y. Yoshizaki, E. Yuba, N. Sakaguchi, K. Koiwai, A. Harada, K. Kono, pH-sensitive polymer-modified liposome-based immunity-inducing system: effects of inclusion of cationic lipid and CpG-DNA, Biomaterials, Vol. 141, pp. 272-283, 2017.
[37]        E. Yuba, T. Osaki, M. Ono, S. Park, A. Harada, M. Yamashita, K. Azuma, T. Tsuka, N. Ito, T. Imagawa, Bleomycin-loaded pH-sensitive polymer–lipid-incorporated liposomes for cancer chemotherapy, Polymers, Vol. 10, No. 1, pp. 74, 2018.
[38]        G. P. Mishra, M. Bagui, V. Tamboli, A. K. Mitra, Recent applications of liposomes in ophthalmic drug delivery, Journal of drug delivery, Vol. 2011, 2011.
[39]        E. Elizondo, E. Moreno, I. Cabrera, A. Córdoba, S. Sala, J. Veciana, N. Ventosa, Liposomes and other vesicular systems: structural characteristics, methods of preparation, and use in nanomedicine, Progress in molecular biology and translational science, Vol. 104, pp. 1-52, 2011.
[40]        R. Barnadas-Rodrı́guez, M. Sabés, Factors involved in the production of liposomes with a high-pressure homogenizer, International journal of pharmaceutics, Vol. 213, No. 1-2, pp. 175-186, 2001.
[41]        M. M. Tosi, A. P. Ramos, B. S. Esposto, S. M. Jafari, Dynamic light scattering (DLS) of nanoencapsulated food ingredients,  in: Characterization of Nanoencapsulated Food Ingredients, Eds., pp. 191-211: Elsevier, 2020.
[42]        P. Singh, J. Bodycomb, B. Travers, K. Tatarkiewicz, S. Travers, G. R. Matyas, Z. Beck, Particle size analyses of polydisperse liposome formulations with a novel multispectral advanced nanoparticle tracking technology, International journal of pharmaceutics, Vol. 566, pp. 680-686, 2019.
[43]        M. C. Filion, N. C. Phillips, Toxicity and immunomodulatory activity of liposomal vectors formulated with cationic lipids toward immune effector cells, Biochimica et Biophysica Acta (BBA)-Biomembranes, Vol. 1329, No. 2, pp. 345-356, 1997.
[44]        M. Groves, Liposome Technology: Liposome Preparation and Related Techniques, Edited by G. Gregordiadis, EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS, Vol. 39, pp. 273-273, 1993.
[45]        B. C. Keller, Liposomes in nutrition, Trends in food science & technology, Vol. 12, No. 1, pp. 25-31, 2001.
[46]        W. Sułkowski, D. Pentak, K. Nowak, A. Sułkowska, The influence of temperature, cholesterol content and pH on liposome stability, Journal of molecular structure, Vol. 744, pp. 737-747, 2005.
[47]        M. Grazia Calvagno, C. Celia, D. Paolino, D. Cosco, M. Iannone, F. Castelli, P. Doldo, M. Fresta, Effects of lipid composition and preparation conditions on physical-chemical properties, technological parameters and in vitro biological activity of gemcitabine-loaded liposomes, Current drug delivery, Vol. 4, No. 1, pp. 89-101, 2007.
[48]        B. Maherani, E. Arab-Tehrany, M. R Mozafari, C. Gaiani, M. Linder, Liposomes: a review of manufacturing techniques and targeting strategies, Current nanoscience, Vol. 7, No. 3, pp. 436-452, 2011.
[49]        J. Weiss, S. Gaysinsky, M. Davidson, J. McClements, Nanostructured encapsulation systems: food antimicrobials,  in: Global issues in food science and technology, Eds., pp. 425-479: Elsevier, 2009.
[50]        M. R. Mozafari, Nanoliposomes: preparation and analysis, Methods Mol Biol, Vol. 605, pp. 29-50, 2010. eng
[51]        R. M. Mozafari, 2005, Nanoliposomes: from fundamentals to recent developments, Trafford,
[52]        A. Laouini, C. Jaafar-Maalej, I. Limayem-Blouza, S. Sfar, C. Charcosset, H. Fessi, Preparation, characterization and applications of liposomes: state of the art, Journal of colloid Science and Biotechnology, Vol. 1, No. 2, pp. 147-168, 2012.
[53]        A. Akbarzadeh, R. Rezaei-Sadabady, S. Davaran, S. W. Joo, N. Zarghami, Y. Hanifehpour, M. Samiei, M. Kouhi, K. Nejati-Koshki, Liposome: classification, preparation, and applications, Nanoscale research letters, Vol. 8, No. 1, pp. 1-9, 2013.
[54]        E. Kulås, R. G. Ackman, Properties of α‐, γ‐, and δ‐tocopherol in purified fish oil triacylglycerols, Journal of the American Oil Chemists' Society, Vol. 78, No. 4, pp. 361-367, 2001.
[55]        F. Szoka Jr, D. Papahadjopoulos, Comparative properties and methods of preparation of lipid vesicles (liposomes), Annual review of biophysics and bioengineering, Vol. 9, No. 1, pp. 467-508, 1980.
[56]        N. Mousavipour, S. Babaei, E. Moghimipour, M. Moosavi-Nasab, Z. Ceylan, A novel perspective with characterized nanoliposomes: Limitation of lipid oxidation in fish oil, LWT, Vol. 152, pp. 112387, 2021.
[57]        J. Lopez-Polo, A. Monasterio, P. Cantero-López, F. A. Osorio, Combining edible coatings technology and nanoencapsulation for food application: A brief review with an emphasis on nanoliposomes, Food Research International, Vol. 145, pp. 110402, 2021.
[58]        S.-B. Han, B. Won, S.-c. Yang, D.-H. Kim, Asterias pectinifera derived collagen peptide-encapsulating elastic nanoliposomes for the cosmetic application, Journal of Industrial and Engineering Chemistry, Vol. 98, pp. 289-297, 2021.
[59]        C. Europea, 2006, The appropriateness of existing methodologies to assess the potential risks associated with engineered and adventitious products of nanotechnologies, European Commission,
[60]        P. da Silva Malheiros, D. J. Daroit, A. Brandelli, Food applications of liposome-encapsulated antimicrobial peptides, Trends in Food Science & Technology, Vol. 21, No. 6, pp. 284-292, 2010.
[61]        A. I. Gomaa, C. Martinent, R. Hammami, I. Fliss, M. Subirade, Dual coating of liposomes as encapsulating matrix of antimicrobial peptides: development and characterization, Frontiers in chemistry, Vol. 5, pp. 103, 2017.
[62]        M. I. Alam, S. Beg, A. Samad, S. Baboota, K. Kohli, J. Ali, A. Ahuja, M. Akbar, Strategy for effective brain drug delivery, European journal of pharmaceutical sciences, Vol. 40, No. 5, pp. 385-403, 2010.
[63]        Z. Drulis-Kawa, A. Dorotkiewicz-Jach, Liposomes as delivery systems for antibiotics, International journal of pharmaceutics, Vol. 387, No. 1-2, pp. 187-198, 2010.
[64]        M. Hasan, K. Elkhoury, C. J. Kahn, E. Arab-Tehrany, M. Linder, Preparation, characterization, and release kinetics of chitosan-coated nanoliposomes encapsulating curcumin in simulated environments, Molecules, Vol. 24, No. 10, pp. 2023, 2019.
[65]        S. Honmane, A. Hajare, H. More, R. A. M. Osmani, S. Salunkhe, Lung delivery of nanoliposomal salbutamol sulfate dry powder inhalation for facilitated asthma therapy, Journal of liposome research, Vol. 29, No. 4, pp. 332-342, 2019.
[66]        P. Mura, Advantages of the combined use of cyclodextrins and nanocarriers in drug delivery: A review, International journal of pharmaceutics, Vol. 579, pp. 119181, 2020.
[67]        F. Golchinfar, M. Kazemi, S. Azimi Dezfouli, Immunity Evaluation of an Experimental Designed Nanoliposomal Vaccine Containing FMDV Immunodominant Peptides.
[68]        Y. Diebold, M. Jarrín, V. Sáez, E. L. Carvalho, M. Orea, M. Calonge, B. Seijo, M. J. Alonso, Ocular drug delivery by liposome–chitosan nanoparticle complexes (LCS-NP), Biomaterials, Vol. 28, No. 8, pp. 1553-1564, 2007.
[69]        R. Kalu, P. Boateng, L. Carrier, J. Garzon, A. Tang, C. Reickert, A. Stefanou, Preoperative Versus Postoperative Use of Transversus Abdominis Plane Block With Nonliposomal Bupivacaine on Postoperative Narcotic Use: A Retrospective Study, 2021.
[70]        S. Terry, SC Terry, JH Jerman, and JB Angell, IEEE Trans. Electron Devices, Vol. 26, pp. 1880, 1979.
[71]        B. J. Kirby, 2010, Micro-and nanoscale fluid mechanics: transport in microfluidic devices, Cambridge university press,
[72]        V. Y. Rudyak, V. M. Aniskin, A. A. Maslov, A. V. Minakov, S. G. Mironov, Methods of Modeling of Microflows and Nanoflows,  in: Micro-and Nanoflows, Eds., pp. 1-56: Springer, 2018.
[73]        S. I. Hamdallah, R. Zoqlam, P. Erfle, M. Blyth, A. M. Alkilany, A. Dietzel, S. Qi, Microfluidics for pharmaceutical nanoparticle fabrication: The truth and the myth, International journal of pharmaceutics, Vol. 584, pp. 119408, 2020.
[74]        V. Majarikar, H. Takehara, T. Ichiki, Adsorption phenomena of anionic and cationic Nanoliposomes on the surface of poly (dimethylsiloxane) microchannel, Journal of Photopolymer Science and Technology, Vol. 32, No. 1, pp. 107-113, 2019.
[75]        J. Cottet, P. Renaud, Introduction to microfluidics,  in: Drug Delivery Devices and Therapeutic Systems, Eds., pp. 3-17: Elsevier, 2021.
[76]        P. Tabeling, Introduction to Microfluidics Oxford University Press, Oxford, England ISBN, 2005.
[77]        H. Elsana, T. O. Olusanya, J. Carr-Wilkinson, S. Darby, A. Faheem, A. A. Elkordy, Evaluation of novel cationic gene based liposomes with cyclodextrin prepared by thin film hydration and microfluidic systems, Scientific reports, Vol. 9, No. 1, pp. 1-17, 2019.
[78]        E. Rideau, R. Dimova, P. Schwille, F. R. Wurm, K. Landfester, Liposomes and polymersomes: a comparative review towards cell mimicking, Chemical society reviews, Vol. 47, No. 23, pp. 8572-8610, 2018.
[79]        S. Deshpande, C. Dekker, On-chip microfluidic production of cell-sized liposomes, Nature protocols, Vol. 13, No. 5, pp. 856-874, 2018.
[80]        E. Ilhan-Ayisigi, B. Yaldiz, G. Bor, A. Yaghmur, O. Yesil-Celiktas, Advances in microfluidic synthesis and coupling with synchrotron SAXS for continuous production and real-time structural characterization of nano-self-assemblies, Colloids and Surfaces B: Biointerfaces, Vol. 201, pp. 111633, 2021/05/01/, 2021.
[81]        N. Forbes, M. T. Hussain, M. L. Briuglia, D. P. Edwards, J. H. Ter Horst, N. Szita, Y. Perrie, Rapid and scale-independent microfluidic manufacture of liposomes entrapping protein incorporating in-line purification and at-line size monitoring, International journal of pharmaceutics, Vol. 556, pp. 68-81, 2019.
[82]        N. N. Deng, W. T. Huck, Microfluidic formation of monodisperse coacervate organelles in liposomes, Angewandte Chemie, Vol. 129, No. 33, pp. 9868-9872, 2017.
[83]        G. Lou, G. Anderluzzi, S. Woods, C. W. Roberts, Y. Perrie, A novel microfluidic-based approach to formulate size-tuneable large unilamellar cationic liposomes: Formulation, cellular uptake and biodistribution investigations, European Journal of Pharmaceutics and Biopharmaceutics, Vol. 143, pp. 51-60, 2019.
[84]        B. Yu, R. J. Lee, L. J. Lee, Microfluidic methods for production of liposomes, Methods in enzymology, Vol. 465, pp. 129-141, 2009.
[85]        J. Kotouček, F. Hubatka, J. Mašek, P. Kulich, K. Velínská, J. Bezděková, M. Fojtíková, E. Bartheldyová, A. Tomečková, J. Stráská, Preparation of nanoliposomes by microfluidic mixing in herring-bone channel and the role of membrane fluidity in liposomes formation, Scientific reports, Vol. 10, No. 1, pp. 1-11, 2020.
[86]        E. Bartheldyová, P. T. Knotigová, K. Zachová, J. Mašek, P. Kulich, R. Effenberg, D. Zyka, F. Hubatka, J. Kotouček, H. Čelechovská, N-Oxy lipid-based click chemistry for orthogonal coupling of mannan onto nanoliposomes prepared by microfluidic mixing: Synthesis of lipids, characterisation of mannan-coated nanoliposomes and in vitro stimulation of dendritic cells, Carbohydrate polymers, Vol. 207, pp. 521-532, 2019.
[87]        S. Bochicchio, A. Dalmoro, F. Recupido, G. Lamberti, A. A. Barba, Nanoliposomes production by a protocol based on a simil-microfluidic approach,  in: Advances in Bionanomaterials, Eds., pp. 3-10: Springer, 2018.
[88]        Z. Chen, J. Y. Han, L. Shumate, R. Fedak, D. L. DeVoe, High throughput nanoliposome formation using 3D printed microfluidic flow focusing chips, Advanced Materials Technologies, Vol. 4, No. 6, pp. 1800511, 2019.
[89]        D. Odetade, G. Vladisavljevic, Preparation of nanoliposomes and nanocrystals using microfluidic strategies [Poster].
[90]        S. Cinquerrui, Microfluidic encapsulation of bacteriophages in nanoliposomes and macrophage intracellular trafficking studies,  Thesis, Loughborough University, 2020.
[91]        H. Shan, Q. Lin, D. Wang, X. Sun, B. Quan, X. Chen, Z. Chen, 3D Printed Integrated Multi-Layer Microfluidic Chips for Ultra-High Volumetric Throughput Nanoliposome Preparation, Frontiers in bioengineering and biotechnology, pp. 950, 2021.
Volume 52, Issue 4
December 2021
Pages 751-767
  • Receive Date: 21 December 2021
  • Revise Date: 31 December 2021
  • Accept Date: 31 December 2021
  • First Publish Date: 31 December 2021