A review on functionally graded porous structures reinforced by graphene platelets

Document Type : Review Paper

Authors

1 Lecturer, Faculty of Mechanical Engineering, University of Eyvanekey

2 University of Eyvanekey

3 Mechanical Engineering Department, Islamic Azad University- Tehran North Branch

4 Department of Mechanical Engineering, University of Hormozgan, Bandar Abbas, Iran

5 Department of Mechanical Engineering, Islamic Azad University, Badroud branch, Badroud, Iran.

Abstract

Nowadays, there is a high demand for great structural implementation and multifunctionality with excellent mechanical properties. The porous structures reinforced by graphene platelet (GPLs) having valuable properties, such as heat resistance, lightweight, and excellent energy absorption, have been considerably used in different engineering implementations. However, stiffness of porous structures reduces significantly, due to the internal cavities, by adding GPLs into porous medium, effective mechanical properties of porous structure considerably enhances. To boost the efficiency and capability of structures, functionally graded (FG) porous structures reinforced by GPLs have been suggested in the literature. Therefore, some researchers tried to figure out the fantastic characteristics of these structures and research activities in this emerging area have been rapidly increasing. The present paper (a) briefly reviews the mechanical properties of functionally graded porous composites reinforced by GPLs and discusses the existing micromechanics model for the prediction of effective mechanical properties; (b) presents a comprehensive review on the mechanical analyses of these structures; (c) discuses the challenges and possible future works.

Keywords

[1] Hadi, A., Nejad, M. Z., & Hosseini, M. (2018). Vibrations of three-dimensionally graded nanobeams. International Journal of Engineering Science128, 12-23. ‏
[2] Hosseini, M., Shishesaz, M., Tahan, K. N., & Hadi, A. (2016). Stress analysis of rotating nano-disks of variable thickness made of functionally graded materials. International Journal of Engineering Science109, 29-53. ‏
[3] Shahsavari, M., Asemi, K., Babaei, M., & Kiarasi, F. (2021). Numerical Investigation On Thermal Post-Buckling of Annular Sector Plates Made of FGM Via 3D Finite Element Method. Mechanics of Advanced Composite Structures‎ (8). ‏309-320
[4] Hosseini, M., Shishesaz, M., & Hadi, A. (2019). Thermoelastic analysis of rotating functionally graded micro/nanodisks of variable thickness. Thin-Walled Structures134, 508-523.‏
[5] Shishesaz, M., Hosseini, M., Tahan, K. N., & Hadi, A. (2017). Analysis of functionally graded nanodisks under thermoelastic loading based on the strain gradient theory. Acta Mechanica228(12), 4141-4168. ‏
[6] Hadi, A., Nejad, M. Z., Rastgoo, A., & Hosseini, M. (2018). Buckling analysis of FGM Euler-Bernoulli nano-beams with 3D-varying properties based on consistent couple-stress theory. Steel and Composite Structures26(6), 663-672. ‏
[7] Bagherizadeh, E., Kiani, Y., & Eslami, M. R. (2011). Mechanical buckling of functionally graded material cylindrical shells surrounded by Pasternak elastic foundation. Composite Structures93(11), 3063-3071.
[8] Khoram, M. M., Hosseini, M., Hadi, A., & Shishehsaz, M. (2020). Bending Analysis of Bidirectional FGM Timoshenko Nanobeam Subjected to Mechanical and Magnetic Forces and Resting on Winkler–Pasternak Foundation. International Journal of Applied Mechanics12(08), 2050093. ‏
[9] Shishesaz, M., & Hosseini, M. (2019). Mechanical behavior of functionally graded nano-cylinders under radial pressure based on strain gradient theory. Journal of Mechanics35(4), 441-454.‏
[10] Nejad, M. Z., & Hadi, A. (2016). Non-local analysis of free vibration of bi-directional functionally graded Euler–Bernoulli nano-beams. International Journal of Engineering Science105, 1-11. ‏
[11] Nazari, H., Babaei, M., Kiarasi, F., Asemi, K., (2021) Geometrically nonlinear dynamic analysis of functionally graded material plate excited by a moving load applying first-order shear deformation theory via generalized differential quadrature method. SN Appl. Sci. 3, 847.
[12] Nejad, M. Z., Rastgoo, A., & Hadi, A. (2014). Exact elasto-plastic analysis of rotating disks made of functionally graded materials. International Journal of Engineering Science85, 47-57. ‏
[13] Nejad, M. Z., Hadi, A., & Farajpour, A. (2017). Consistent couple-stress theory for free vibration analysis of Euler-Bernoulli nano-beams made of arbitrary bi-directional functionally graded materials. Structural engineering and mechanics: An international journal63(2), 161-169. ‏
[14] Nejad, M. Z., Hadi, A., Omidvari, A., & Rastgoo, A. (2018). Bending analysis of bi-directional functionally graded Euler-Bernoulli nano-beams using integral form of Eringen's non-local elasticity theory. Structural engineering and mechanics: An international journal67(4), 417-425. ‏
[15] Barati, A., Adeli, M. M., & Hadi, A. (2020). Static torsion of bi-directional functionally graded microtube based on the couple stress theory under magnetic field. International Journal of Applied Mechanics12(02), 2050021.‏
[16] Hadi, A., Rastgoo, A., Daneshmehr, A. R., & Ehsani, F. (2013). Stress and strain analysis of functionally graded rectangular plate with exponentially varying properties. Indian Journal of Materials Science2013.‏
[17] Damghanian, R., Asemi, K., & Babaei, M. (2020). A New Beam Element for Static, Free and Forced Vibration Responses of Microbeams Resting on Viscoelastic Foundation Based on Modified Couple Stress and Third-Order Beam Theories. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 1-17. ‏
[18] Hadi, A., Daneshmehr, A. R., Mehrian, S. N., Hosseini, M., & Ehsani, F. (2013). Elastic analysis of functionally graded Timoshenko beam subjected to transverse loading. Technical Journal of Engineering and Applied Sciences3(13), 1246-1254.
[19] Smith B H, Szyniszewski S, Hajjar J F, Schafer B W, Arwade S R. Steel foam for structures: A review of applications, manufacturing and material properties. Journal of Constructional Steel Research 2012;71: 1-10.
[20] Lefebvre L P, Banhart J, Dunand D C. Porous metals and metallic foams: current status and recent developments. Advanced engineering materials 2008; 10(9): 775-787.
[21] Kiarasi, F.; Babaei, M.; Asemi, K.; Dimitri, R.; Tornabene, F. (2021) Three-Dimensional Buckling Analysis of Functionally Graded Saturated Porous Rectangular Plates under Combined Loading Conditions. Appl. Sci. 11, 10434.
[22] Babaei M, Asemi K, Kiarasi F, (2021) Dynamic analysis of functionally graded rotating thick truncated cone made of saturated porous materials, Thin-Walled Structures. 164, 107852.
[23] Babaei, M., Hajmohammad, M. H., & Asemi, K. (2020). Natural frequency and dynamic analyses of functionally graded saturated porous annular sector plate and cylindrical panel based on 3D elasticity. Aerospace Science and Technology96, 105524. ‏
[24] Babaei, M., Asemi, K., & Safarpour, P. (2019). Natural frequency and dynamic analyses of functionally graded saturated porous beam resting on viscoelastic foundation based on higher order beam theory. Journal of Solid Mechanics11(3), 615-634. ‏
[25] Babaei, M., & Asemi, K. (2020). Stress analysis of functionally graded saturated porous rotating thick truncated cone. Mechanics Based Design of Structures and Machines, 1-28. ‏
[26] Babaei, M., Asemi, K., & Safarpour, P. (2019). Buckling and static analyses of functionally graded saturated porous thick beam resting on elastic foundation based on higher order beam theory. Iranian Journal of Mechanical Engineering Transactions of the ISME20(1), 94-112. ‏
[27] Mohammadi, M., Hosseini, M., Shishesaz, M., Hadi, A., & Rastgoo, A. (2019). Primary and secondary resonance analysis of porous functionally graded nanobeam resting on a nonlinear foundation subjected to mechanical and electrical loads. European Journal of Mechanics-A/Solids, 77, 103793. ‏
[28] Karami, B., Shahsavari, D., Janghorban, M., Dimitri, R., & Tornabene, F. (2019). Wave propagation of porous nanoshells. Nanomaterials9(1), 22.
[29] Xia X C, Chen X W, Zhang Z, Chen X, Zhao W M, Liao B, Hur B. Effects of porosity and pore size on the compressive properties of closed-cell Mg alloy foam. Journal of Magnesium and Alloys 2013; 1(4): 330-335.
[30] Babaei, M., Asemi, K., & Kiarasi, F. (2020). Static response and free-vibration analysis of a functionally graded annular elliptical sector plate made of saturated porous material based on 3D finite element method. Mechanics Based Design of Structures and Machines, 1-25.
[31] Kiarasi, F., Babaei, M., Dimitri, R., & Tornabene, F. (2021). Hygrothermal modeling of the buckling behavior of sandwich plates with nanocomposite face sheets resting on a Pasternak foundation. Continuum Mechanics and Thermodynamics, 33,911–932
[32] Iijima S, Helical microtubules of graphitic carbon. Nature 1991; 354(6348), 56-58.
[33] Liew K M, Lei Z X, Zhang L W, Mechanical analysis of functionally graded carbon nanotube reinforced composites: a review. Composite Structures 2015; 120: 90-97.
[34] Babaei, M., & Asemi, K. (2020). Static, dynamic and natural frequency analyses of functionally graded carbon nanotube annular sector plates resting on viscoelastic foundation. SN Applied Sciences2(10), 1-21.
[35] Mittal G, Dhand V, Rhee K Y, Park S J, Lee W R. A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. Journal of Industrial and Engineering Chemistry 2015; 21:11-25.
[36] Duarte I, Ventura E, Olhero S, Ferreira J M. An effective approach to reinforced closed-cell Al-alloy foams with multiwalled carbon nanotubes. Carbon 2015; 95: 589-600.
[37] Rafiee M A, Rafiee J, Wang Z, Song H, Yu Z Z, Koratkar N. Enhanced mechanical properties of nanocomposites at low graphene content. ACS nano 2009; 3(12): 3884-3890.
[38] Hassani A, Habibolahzadeh A, Bafti H. Production of graded aluminum foams via powder space holder technique. Materials & Design 2012; 40:510-515.
 [39] Hung, D. X., Truong, H. Q., & Tu, T. M. (2022). Nonlinear Bending Analysis of FG Porous Beams Reinforced with Graphene Platelets Under Various Boundary Conditions by Ritz Method. In Modern Mechanics and Applications (pp. 72-86). Springer, Singapore. ‏
[40] Anirudh, B., Ganapathi, M., Anant, C., & Polit, O. (2019). A comprehensive analysis of porous graphene-reinforced curved beams by finite element approach using higher-order structural theory: Bending, vibration and buckling. Composite Structures222, 110899.
[41] Sahmani, S., Aghdam, M. M., & Rabczuk, T. (2018). Nonlinear bending of functionally graded porous micro/nano-beams reinforced with graphene platelets based upon nonlocal strain gradient theory. Composite Structures186, 68-78.
[42] Polit, O., Anant, C., Anirudh, B., & Ganapathi, M. (2019). Functionally graded graphene reinforced porous nanocomposite curved beams: Bending and elastic stability using a higher-order model with thickness stretch effect. Composites Part B: Engineering166, 310-327. ‏
[43] Yas, M. H., & Rahimi, S. (2020). Thermal buckling analysis of porous functionally graded nanocomposite beams reinforced by graphene platelets using Generalized differential quadrature method. Aerospace Science and Technology107, 106261. ‏
[44] Gao, K., Do, D. M., Li, R., Kitipornchai, S., & Yang, J. (2020). Probabilistic stability analysis of functionally graded graphene reinforced porous beams. Aerospace Science and Technology98, 105738. ‏
[45] Liu, Z., Yang, C., Gao, W., Wu, D., & Li, G. (2019). Nonlinear behaviour and stability of functionally graded porous arches with graphene platelets reinforcements. International Journal of Engineering Science137, 37-56. ‏
[46] Yang J, Chen D, Kitipornchai, S. Buckling and free vibration analyses of functionally graded graphene reinforced porous nanocomposite plates based on Chebyshev-Ritz method. Composite Structures 2018; 193: 281-294.
[47] Nguyen, Q. H., Nguyen, L. B., Nguyen, H. B., & Nguyen-Xuan, H. (2020). A three-variable high order shear deformation theory for isogeometric free vibration, buckling and instability analysis of FG porous plates reinforced by graphene platelets. Composite Structures245, 112321. ‏
[48] Priyanka, R., Twinkle, C. M., & Pitchaimani, J. (2021). Stability and dynamic behavior of porous FGM beam: influence of graded porosity, graphene platelets, and axially varying loads. Engineering with Computers, 1-20. ‏
[49] Anamagh, M. R., & Bediz, B. (2020). Free vibration and buckling behavior of functionally graded porous plates reinforced by graphene platelets using spectral Chebyshev approach. Composite Structures253, 112765.
[50] Lieu, N. T. B., & Hung, N. X. (2019). Static analysis of piezoelectric functionally graded porous plates reinforced by graphene platelets. Journal of Science and Technology in Civil Engineering (STCE)-NUCE13(3), 58-72. ‏
[51] Arefi, M., Firouzeh, S., Bidgoli, E. M. R., & Civalek, Ö. (2020). Analysis of porous micro-plates reinforced with FG-GNPs based on Reddy plate theory. Composite Structures247, 112391. ‏
 [52] Arshid, E., Amir, S., & Loghman, A. (2021). Thermal buckling analysis of FG graphene nanoplatelets reinforced porous nanocomposite MCST-based annular/circular microplates. Aerospace Science and Technology111, 106561. ‏
[53] Shahgholian-Ghahfarokhi D, Rahimi G, Khodadadi A, Salehipour H, Afrand M. Buckling analyses of FG porous nanocomposite cylindrical shells with graphene platelet reinforcement subjected to uniform external lateral pressure. Mechanics Based Design of Structures and Machines 2019; 1-21.
[54] Shahgholian-Ghahfarokhi D, Safarpour M, Rahimi A. Torsional buckling analyses of functionally graded porous nanocomposite cylindrical shells reinforced with graphene platelets (GPLs). Mechanics Based Design of Structures and Machines, 2019; 1-22.
[55] Dong, Y. H., L. W. He, L. Wang, Y. H. Li, and J. Yang. 2018. Buckling of spinning functionally graded graphene reinforced porous nanocomposite cylindrical shells: An analytical study. Aerospace Science and Technology 82- 83:466. doi: 10.1016/j.ast.2018.09.037.
[56] Zhou Z, Ni Y, Tong Z, Zhu S, Sun J, Xu X. Accurate nonlinear buckling analysis of functionally graded porous graphene platelet reinforced composite cylindrical shells. International Journal of Mechanical Sciences 2019; 151: 537-550.
[57] Ebrahimi F, Hashemabadi D, Habibi M, Safarpour H. Thermal buckling and forced vibration characteristics of a porous GNP reinforced nanocomposite cylindrical shell. Microsystem Technologies 2020; 26(2): 461-473.
[58] Li, Z., & Zheng, J. (2020). Nonlinear stability of the encased functionally graded porous cylinders reinforced by graphene nanofillers subjected to pressure loading under thermal effect. Composite Structures233, 111584. ‏
[59] Twinkle, C. M., & Pitchaimani, J. (2021). Free vibration and stability of graphene platelet reinforced porous nano-composite cylindrical panel: Influence of grading, porosity and non-uniform edge loads. Engineering Structures230, 111670.
[60] Shahgholian, D., Safarpour, M., Rahimi, A. R., & Alibeigloo, A. (2020). Buckling analyses of functionally graded graphene-reinforced porous cylindrical shell using the Rayleigh–Ritz method. Acta Mechanica, 1-16. ‏
[61] Rahimi, A., Alibeigloo, A., & Safarpour, M. (2020). Three-dimensional static and free vibration analysis of graphene platelet–reinforced porous composite cylindrical shell. Journal of Vibration and Control, 26(19-20), 1627-1645. ‏
[62] Chen D, Yang J, Kitipornchai S. Nonlinear vibration and postbuckling of functionally graded graphene reinforced porous nanocomposite beams. Composites Science and Technology, 2017; 142: 235-245.
[63] Barati, M. R., & Zenkour, A. M. (2019). Analysis of postbuckling of graded porous GPL-reinforced beams with geometrical imperfection. Mechanics of Advanced Materials and Structures26(6), 503-511. ‏
[64] Ansari, R., Hassani, R., Gholami, R., & Rouhi, H. (2021). Buckling and Postbuckling of Plates Made of FG-GPL-Reinforced Porous Nanocomposite with Various Shapes and Boundary Conditions. International Journal of Structural Stability and Dynamics21(05), 2150063.
[65] Yaghoobi, H., & Taheri, F. (2020). Analytical solution and statistical analysis of buckling capacity of sandwich plates with uniform and non-uniform porous core reinforced with graphene nanoplatelets. Composite Structures252, 112700.
[66] Salmani, R., Gholami, R., Ansari, R., & Fakhraie, M. (2021). Analytical investigation on the nonlinear postbuckling of functionally graded porous cylindrical shells reinforced with graphene nanoplatelets. The European Physical Journal Plus136(1), 1-19. ‏
[67] Kitipornchai S, Chen D, Yang J. Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets. Materials & Design 2017; 116: 656-665.
[68] Yang X, Liu H, Ma J. Thermo-mechanical vibration of FG curved nanobeam containing porosities and reinforced by graphene platelets. Microsystem Technologies 2020; 1-17.
[69] Zhang, L. H., Lai, S. K., Wang, C., & Yang, J. (2021). DSC regularized Dirac-delta method for dynamic analysis of FG graphene platelet-reinforced porous beams on elastic foundation under a moving load. Composite Structures255, 112865. ‏
[70] Priyanka, R., Twinkle, C. M., & Pitchaimani, J. (2021). Stability and dynamic behavior of porous FGM beam: influence of graded porosity, graphene platelets, and axially varying loads. Engineering with Computers, 1-20. ‏
[71] Binh, C. T., Quoc, T. H., Huan, D. T., & Hien, H. T. (2021). Vibration characteristics of rotating functionally graded porous beams reinforced by graphene platelets. Journal of Science and Technology in Civil Engineering (STCE)-HUCE15(4), 29-41.
[72] Xu, H., Wang, Y. Q., & Zhang, Y. (2021). Free vibration of functionally graded graphene platelet-reinforced porous beams with spinning movement via differential transformation method. Archive of Applied Mechanics91(12), 4817-4834.
[73] Ganapathi, M., Anirudh, B., Anant, C., & Polit, O. (2021). Dynamic characteristics of functionally graded graphene reinforced porous nanocomposite curved beams based on trigonometric shear deformation theory with thickness stretch effect. Mechanics of Advanced Materials and Structures28(7), 741-752. ‏
[74] Yas, M. H., & Rahimi, S. (2020). Thermal vibration of functionally graded porous nanocomposite beams reinforced by graphene platelets. Applied Mathematics and Mechanics41(8), 1209-1226.
[75] Safarpour M, Rahimi A, Alibeigloo A, Bisheh H, Forooghi A. Parametric study of three-dimensional bending and frequency of FG-GPLRC porous circular and annular plates on different boundary conditions. Mechanics Based Design of Structures and Machines 2019; 1-31.
[76] Nguyen N V, Nguyen-Xuan H, Lee D, Lee J. A novel computational approach to functionally graded porous plates with graphene platelets reinforcement. Thin-Walled Structures 2020; 150: 106684.
[77] Gao K, Gao W, Chen D, Yang J. Nonlinear free vibration of functionally graded graphene platelets reinforced porous nanocomposite plates resting on elastic foundation. Composite Structures 2018; 204: 831-846.
[78] Saidi A R, Bahaadini R, Majidi-Mozafari K. On vibration and stability analysis of porous plates reinforced by graphene platelets under aerodynamical loading. Composites Part B: Engineering 2019; 164:778-799.
[79] Asemi K, M Babaei, Kiarasi F. Static, natural frequency and dynamic analyses of functionally graded porous annular sector plates reinforced by graphene platelets. Mechanics Based Design of Structures and Machines 2020; 1–29
[80] Phan D H. Isogeometric Analysis of Functionally-Graded Graphene Platelets Reinforced Porous Nanocomposite Plates Using a Refined Plate Theory. International Journal of Structural Stability and Dynamics 2020; 2050076.
[81] Gao W, Qin Z, Chu F. Wave propagation in functionally graded porous plates reinforced with graphene platelets. Aerospace Science and Technology 2020; 105860.
[82] Zhou, C., Zhang, Z., Zhang, J., Fang, Y., & Tahouneh, V. (2020). Vibration analysis of FG porous rectangular plates reinforced by graphene platelets. Steel and Composite Structures34(2), 215-226.
[83] Teng, M. W., & Wang, Y. Q. (2021). Nonlinear forced vibration of simply supported functionally graded porous nanocomposite thin plates reinforced with graphene platelets. Thin-Walled Structures164, 107799.
[84] Ton-That, H. L., Nguyen-Van, H., & Chau-Dinh, T. (2021). A novel quadrilateral element for analysis of functionally graded porous plates/shells reinforced by graphene platelets. Archive of Applied Mechanics91(6), 2435-2466. ‏
[85] Ansari, R., Hassani, R., Gholami, R., & Rouhi, H. (2021). Free vibration analysis of postbuckled arbitrary-shaped FG-GPL-reinforced porous nanocomposite plates. Thin-Walled Structures163, 107701. ‏
[86] Gao, W., Qin, Z., & Chu, F. (2020). Wave propagation in functionally graded porous plates reinforced with graphene platelets. Aerospace Science and Technology102, 105860. ‏
[87] Safarpour, M., Rahimi, A., Alibeigloo, A. (2020). Static and free vibration analysis of graphene platelets reinforced composite truncated conical shell, cylindrical shell, and annular plate using theory of elasticity and DQM. Mechanics Based Design of Structures and Machines, 48 (4) 496-524.
[88] Bahaadini, R., Saidi, A. R., Arabjamaloei, Z., & Ghanbari-Nejad-Parizi, A. (2019). Vibration analysis of functionally graded graphene reinforced porous nanocomposite shells. International Journal of Applied Mechanics11(07), 1950068.
[87] Ye, C., & Wang, Y. Q. (2021). Nonlinear forced vibration of functionally graded graphene platelet-reinforced metal foam cylindrical shells: Internal resonances. Nonlinear Dynamics, 104(3), 2051-2069.‏
[88] Wang, Y. Q., Ye, C., & Zu, J. W. (2019). Nonlinear vibration of metal foam cylindrical shells reinforced with graphene platelets. Aerospace Science and Technology85, 359-370.
[89] Moradi-Dastjerdi, R., & Behdinan, K. (2021). Stress waves in thick porous graphene-reinforced cylinders under thermal gradient environments. Aerospace Science and Technology110, 106476.
[90] Salehi, M., Gholami, R., & Ansari, R. (2021). Analytical solution approach for nonlinear vibration of shear deformable imperfect FG-GPLR porous nanocomposite cylindrical shells. Mechanics Based Design of Structures and Machines, 1-23. ‏
[91] Nejadi, M. M., Mohammadimehr, M., & Mehrabi, M. (2021). Free vibration and stability analysis of sandwich pipe by considering porosity and graphene platelet effects on conveying fluid flow. Alexandria Engineering Journal60(1), 1945-1954. ‏
[92] Zhou, X., Wang, Y., & Zhang, W. (2021). Vibration and flutter characteristics of GPL-reinforced functionally graded porous cylindrical panels subjected to supersonic flow. Acta Astronautica183, 89-100. ‏
[93] Ton-That, H. L., Nguyen-Van, H., & Chau-Dinh, T. (2021). A novel quadrilateral element for analysis of functionally graded porous plates/shells reinforced by graphene platelets. Archive of Applied Mechanics91(6), 2435-2466. ‏
[94] Ebrahimi, F., Seyfi, A., Dabbagh, A., & Tornabene, F. (2019). Wave dispersion characteristics of porous graphene platelet-reinforced composite shells. Structural Engineering and Mechanics71(1), 99-107.‏
[95] Pourjabari, A., Hajilak, Z. E., Mohammadi, A., Habibi, M., & Safarpour, H. (2019). Effect of porosity on free and forced vibration characteristics of the GPL reinforcement composite nanostructures. Computers & Mathematics with Applications77(10), 2608-2626.
[96] Bahaadini, R., Saidi, A. R., Arabjamaloei, Z., & Ghanbari-Nejad-Parizi, A. (2019). Vibration analysis of functionally graded graphene reinforced porous nanocomposite shells. International Journal of Applied Mechanics11(07), 1950068.
[97] Pourjabari, A., Hajilak, Z. E., Mohammadi, A., Habibi, M., & Safarpour, H. (2019). Effect of porosity on free and forced vibration characteristics of the GPL reinforcement composite nanostructures. Computers & Mathematics with Applications77(10), 2608-2626.
[98] Baghlani, A., Najafgholipour, M. A., & Khayat, M. (2021). The influence of mechanical uncertainties on the free vibration of functionally graded graphene-reinforced porous nanocomposite shells of revolution. Engineering Structures228, 111356. ‏
[99] Khayat, M., Baghlani, A., & Najafgholipour, M. A. (2021). The propagation of uncertainty in the geometrically nonlinear responses of smart sandwich porous cylindrical shells reinforced with graphene platelets. Composite Structures258, 113209. ‏
[100] Sobhani, E., Masoodi, A. R., & Ahmadi-Pari, A. R. (2021). Vibration of FG-CNT and FG-GNP sandwich composite coupled Conical-Cylindrical-Conical shell. Composite Structures273, 114281.
[101] Sobhani, E., Arbabian, A., Civalek, Ö., & Avcar, M. (2021). The free vibration analysis of hybrid porous nanocomposite joined hemispherical–cylindrical–conical shells. Engineering with Computers, 1-28.
[102] Kiarasi, F., Babaei, M., Mollaei, S., Mohammadi, M., & Asemi, K. (2021). Free vibration analysis of FG porous joined truncated conical-cylindrical shell reinforced by graphene platelets. Advances in nano research11(4), 361-380. ‏
[103] Zhao, T. Y., Liu, Z. F., Pan, H. G., Zhang, H. Y., & Yuan, H. Q. (2021). Vibration characteristics of functionally graded porous nanocomposite blade-disk-shaft rotor system reinforced with graphene nanoplatelets. Applied Composite Materials, 1-15. ‏
[104] Zhao, T., Yang, Y., Pan, H., Zhang, H., & Yuan, H. (2021). Free vibration analysis of a spinning porous nanocomposite blade reinforced with graphene nanoplatelets. The Journal of Strain Analysis for Engineering Design, 0309324720985758. ‏
[105] Cai, Y., Liu, Z. F., Zhao, T. Y., & Yang, J. (2021). Parameter Interval Uncertainty Analysis of Internal Resonance of Rotating Porous Shaft–Disk–Blade Assemblies Reinforced by Graphene Nanoplatelets. Materials14(17), 5033. ‏
[106] Zhao, T. Y., Cui, Y. S., Pan, H. G., Yuan, H. Q., & Yang, J. (2021). Free vibration analysis of a functionally graded graphene nanoplatelet reinforced disk-shaft assembly with whirl motion. International Journal of Mechanical Sciences197, 106335. ‏
[107] Chai, Q., & Wang, Y. Q. (2022). Traveling wave vibration of graphene platelet reinforced porous joined conical-cylindrical shells in a spinning motion. Engineering Structures252, 113718. ‏
[108] Babaei M, Kiarasi F, Hossaeini Marashi M, et al. Stress wave propagation and natural frequency analysis of functionally graded graphene platelet-reinforced porous joined conical– cylindrical–conical. Waves in Random and Complex Media 2021; https://doi.org/10.1080/17455030.2021.2003478
[109] Zhao, S., Yang, Z., Kitipornchai, S., & Yang, J. (2020). Dynamic instability of functionally graded porous arches reinforced by graphene platelets. Thin-Walled Structures, 147, 106491.
[110] Yang, Z., Wu, D., Yang, J., Lai, S. K., Lv, J., Liu, A., & Fu, J. (2021). Dynamic buckling of rotationally restrained FG porous arches reinforced with graphene nanoplatelets under a uniform step load. Thin-Walled Structures166, 108103. ‏
[111] Li, Q., Wu, D., Chen, X., Liu, L., Yu, Y., & Gao, W. (2018). Nonlinear vibration and dynamic buckling analyses of sandwich functionally graded porous plate with graphene platelet reinforcement resting on Winkler–Pasternak elastic foundation. International Journal of Mechanical Sciences, 148, 596-610. ‏
[112] Khayat, M., Baghlani, A., & Najafgholipour, M. A. (2021). The probabilistic dynamic stability analysis of fluid-filled porous cylindrical shells reinforced with graphene platelets. Thin-Walled Structures167, 108256.
Volume 52, Issue 4
December 2021
Pages 731-750
  • Receive Date: 17 December 2021
  • Revise Date: 29 December 2021
  • Accept Date: 29 December 2021