[1] K.T. Chau, Analytic methods in geomechanics, CRC Press Taylor and Francis Group, New York, 2013
[2] M.H. Sadd, Elasticity theory, applications and numerics, Third Edition, Elsevier Academic Press, Amsterdam, 2014.
[3] P. Padio-Guidugli, A. Favata, Elasticity for geotechnicians: A modern exposition of Kelvin, Boussinesq, Flammant, Cerrutti, Melan and Mindlin problems, Solids Mechanics and its Applications, Springer, 2014.
[4] D. Palaniappan, A general solution of equations of equilibrium in linear elasticity, Applied Mathematical Modelling, Vol 35, pp 5494-5499, 2011.
[5] J.R. Barber, Elasticity, 3rd Revised Edition, Springer Science and Business Media, Dordrecht, the Netherlands, 2010.
[6] M. L. Kachanov, B. Shafiro, I. Tsukrov I. Handbook of elasticity solutions, Springer Science and Business Media, Kluwer Academic Publishers, Dordrecht, the Netherlands, 2003.
[8] T.G. Sitharam, L. Govinda-RejuL. Applied Elasticity for Engineers Module: Elastic Solutions and Applications in Geomechanics, 14.139.172.204/nptel/1/CSE/web/ 105108070/module8/lecture17.pdf
[9] R. Abeyaratne, Continuum Mechanics, Volume II of Lecture notes on the Mechanics of Elastic Solids, Cambridge, http://web.mit.edu/abeyartne/ lectures_notes.html, 11^{th} May 2012 updated 6^{th} May 2015, ISSN - 13:978-0-9791865-0-9, ISBN – 10-0-9791865-0-1, 2012.
[10] C. C. Ike, Principles of Soil Mechanics, De-Adroit Innovation, Enugu, Nigeria, 2006.
[11] H.K.Teymoueri, A. Khojasteh, M. Rahimian, R.Y.S. Pak, An analytical solution of wave motion in a transversely isotropic poroelastic half-space underlying a liquid layer. Civil Engineering Infrastructures Journal, 54(1), pp.169–179. DOI: 10.22059/ceij.2020.28370, 2021.
[12] M.Raoofian Naeni, M. Eskandari-Ghadi, A potential method for body and surface wave propagation in transversely isotropic half- and full-spaces. Civil Engineering Infrastructures Journal, Vol.49, No. 2, pp. 263 – 288. DOI: 10.7508/CEIJ.2016.02.006, 2014.
[13] Shariati Mojtaba, Shishehsaz Mohammad, Sahbafar Hossein, Pourabdy Mortaza, Hosseini Mohammad, A review on stress driven nonlocal elasticity theory, Journal of Computational Applied Mechanics,Vol. 52, No.3, pp. 535–552, DOI: 10.22059/jcamech.2021.331410.653, 2021.
[14] C. C. Ike, Fourier-Bessel transform method for finding vertical stress fields in axisymmetrical elasticity problems of elastic half-space involving circular foundation areas.
Advances in Modelling and Analysis A, Vol. 55, No. 4, December 2018, pp. 207-216.
https://doi.org/10.18208/ama_a.550405, 2018.
[15] C.C. Ike, H.N. Onah, C.U. Nwoji, Bessel functions for axisymmetric elasticity problems of the elastic half-space soil: A potential function method. Nigerian Journal of Technology, Vol. 36, No. 3, pp. 773-781. http//dx.doi.org/w4314/nijtv36i3.16, 2017.
[16] C.C. Ike, First principles derivation of a stress function for axially symmetric elasticity problems, and application to Boussinesq problem. Nigerian Journal of Technology, Vol. 36, No. 3, pp 767-772, http//dx.doi.org/10.4314/nijtv36i3.15, 2017.
[17] C.C. Ike, General solutions for axisymmetric elasticity problems of elastic half space using Hankel transform method,
International Journal of Engineering and Technology, Vol 10, No 2, pp 565-580,
https://10.21817/ijet2018/v10i2/181002112, 2018.
[18] C.C. Ike, Hankel transform method for solving axisymmetric elasticity problems of circular foundation on semi-infinite soils.
International Journal of Engineering and Technology, Vol 10, No. 2, pp. 549-564,
https://10.21817/ijet2018/v10i2/181002111, 2018.
[19] C.C. Ike, Love stress function method for solving axisymmetric elasticity problems of the elastic half space, Electronic Journal of Geotechnical Engineering, Vol 24, No 3, pp 663-706, 2019.
[20] C.C. Ike, Hankel transform method for solving the Westergaard problem for point, line and distributed loads on elastic half-space,
Latin American Journal of Solids and Structures, Vol 16, No 1, 2019, pp. 1-19,
http://dx.doi.org/10.1590/1679-78255313, 2019.
[21] C. C. Ike, B.O. Mama, H.N. Onah ., C.U. Nwoji, Trefftz harmonic function method for solving Boussinesq problem, Electronic Journal of Geotechnical Engineering, Vol, 22, Bundle 12 (22.12), pp 4589-4601, 2017.
[22] C.U. Nwoji, H.N. Onah, B.O. Mama, C.C. Ike, Solution of the Boussinesq problem of half space using Green and Zerna displacement potential function method, Electronic Journal of Geotechnical Engineering, Vol 22, Bundle 11, pp 4305-4314, 2017.
[23] C.U. Nwoji, H.N. Onah, B.O. Mama, C.C. Ike, Solution of elastic half-space problem using Boussinesq displacement potential functions.
Asian Journal of Applied Sciences, Vol 5, Issue 5, October 2017, pp 1087-1093,
www.ajouronline.com, 2017.
[24] H.N. Onah, B.O. Mama, C.U. Nwoji, C.C. Ike, Boussinesq displacement potential function method for finding vertical stresses and displacement fields due to distributed load on elastic half space,
Electronic Journal of Geotechnical Engineering, Vol.22, Bundle 15, pp. 5687-5709, available at
www.ejge.com, 2017.
[25] H.N. Onah, N.N. Osadebe, C.C. Ike C.C., C.U. Nwoji, Determination of stresses caused by infinitely long line loads on semi-infinite elastic soils using Fourier transform method, Nigerian Journal of Technology, Vol 35 No 4, October 2016, pp. 726-731. http://doi.org/10.4314/nijt.v35i4.7 [Cross 2016.
[26] H.N. Onah, C.C. Ike, C.U. Nwoji, B.O. Mama, Theory of elasticity solutions for stress fields in semi-infinite linear elastic soil due to distributed load on the boundary using the Fourier transform method, Electronic Journal of Geotechnical Engineering, Vol. 22, Bundle 13, pp. 4945-4962, 2017.
[27] C.C. Ike, Exponential Fourier integral transform method for stress analysis of boundary load on soil,
Mathematical Modelling of Engineering Problems, Vol 5 No 1, March 2018, pp 33-39.
https://doi.org/10.18280/mmep.050105, 2018.
[28] C.C. Ike, Fourier sine transform method for solving the Cerrutti problem of elastic half-plane in plane strain, Mathematical Modelling in Civil Engineering, Vol 14 No 1, pp 1-11, doi:10/2479/mmce-2018-0001, 2018.
[29] C.C. Ike, On Maxwell’s stress functions for solving three dimensional elasticity problems in the theory of elasticity, Journal of Computational Applied Mechanics, Vol 49 Issue 2, December 2018, pp 342-350, doi:10.22059/jcamech.2018.266787.330, 2018.
[30] C.C. Ike, Solution of elasticity problems in two dimensional polar coordinates using Mellin transform, Journal of Computational Applied Mechanics, Vol 50, Issue 1, June 2019, pp 174-181, doi.1022059/jcamech.2019.278288.370, 2019.
[31] H.N. Onah, M.E. Onyia, B.O.Mama, C.U. Nwoji, C.C. Ike, First principles derivation of displacement and stress function for three-dimensional elastostatic problems, and application to the flexural analysis of thick circular plates. Journal of Computational Applied Mechanics, Vol.51, Issue 1, June 2020, pp.184-198. DOI:10.22059/jcamech.2020.295989.471, 2020.
[32] C.C. Ike, Elzaki transform method for finding solutions to two-dimensional elasticity problems in polar coordinates formulated using Airy stress functions, Journal of Computational Applied Mechanics, Vol. 51, Issue 2, December 2020, pp. 302-310, DOI: 10.22059/jcamech.2020.296012.472. 2020.
[33] C.C. Ike, Fourier cosine transform method for solving the elasticity problem of point load on an elastic half plane, International Journal of Scientific and Technology Research, Vol. 9, Issue 4, April 2020, pp 1850-1856, 2020.
[34] C.C. Ike, Cosine integral transformation method for solving the Westergaard problem in elasticity of the half-space, Civil Engineering Infrastructures Journal, Vol.53, Issue 2, pp. 313-339, DOI: 10.22059/ceij.2020.285125.1596, 2020.
[35] C.C. Ike, B.O. Mama, H.N. Onah, C.U. Nwoji, Trefftz displacement potential function method for solving elastic half-space problems,
Civil Engineering and Architecture, Vol 9, No 3, pp 559-583.
https://doi.org/10.13189/cea.2021.090301, 2021.
[36] C.C. Ike, Fourier integral transformation method for solving two dimensional elasticity problems in plane strain using Love stress functions,
Mathematical Modelling of Engineering Problems, Vol.8, No.3, June 2021,pp 333-346.
https://doi.org/10.18280/mmep.080302, 2021.
[37] K.E. Egorov, R.V. Serebrjanyi, Determination of stresses in a rigid circular foundation. 2nd Asian Regional Conference on Soil Mechanics and Foundation Engineering, Tokyo Japan, Vol. 1, pp 246-250, 1963.
[38] M.E. Harr, Foundations of Theoretical Soil Mechanics, McGraw Hill, New York, 1966.
[39] K.E. Egorov, Concerning the question of computing stresses under foundation with footings in the shape of rings, Mekanika Gruntov (Soil Mechanics), pp. 34-57, Grosstroiizdat Moscow, 1958.
[40] M.E. Harr, C.W. Lovell Jr., Vertical stresses under certain axisymmetrical loadings, Highway Research Board Rec. 39, Onlinepubs.trb.org>onlinepubs>hrr>1963, Accessed on 7^{th} September 2019,1963.