A new higher-order theory for the static and dynamic responses of sandwich FG plates

Document Type : Research Paper

Authors

Department of Civil Engineering, Sanjivani College of Engineering, Savitribai Phule Pune University Pune, Kopargaon-423601, M.S., India

Abstract

In this study, a static and free vibration analysis of single layer FG and sandwich FG plates is carried out using a fifth order shear and normal deformation theory. The displacement field of the present theory includes the terms considering the effect of transverse shear and normal deformation. Also, the terms of the thickness co-ordinate are expanded upto fifth order to predict the accurate bending behavior of the plates. The equations of motion are derived based on Hamilton’s principle, and further solved using Navier’s solution scheme. The present results of displacement, stresses and natural frequencies in sandwich FG plates are obtained and compared with other higher order theories available in literature to check the validity and efficacy of the theory.

Keywords

 References
[1]       G. R. Kirchhoff, Uber das Gleichgewicht und die Bewegung einer Elastischen Scheibe, Journal für die reine und angewandte Mathematik Vol. 40, pp. 51-88, 1850.
[2]       R. D. Mindlin, Influence of rotatory inertia and shear on flexural motions of isotropic elastic plates, ASME Journal of Applied Mechanics, Vol. 18, pp. 31-38, 1951.
[3]       A. S. Sayyad, Y. M. Ghugal, Effects of nonlinear hygrothermomechanical loading on bending of FGM rectangular plates resting on two-parameter elastic foundation using four-unknown plate theory, Journal of Thermal Stresses, Vol. 42, No. 2, pp. 213-232, 2019.
[4]       B M Shinde, A. S. Sayyad, A Quasi-3D Polynomial Shear and Normal Deformation Theory for Laminated Composite, Sandwich, and Functionally Graded Beams, Mechanics of advanced composite structures, Vol. 4, No. 2, pp. -, 2017.
[5]       H.-T. Thai, T.-K. Nguyen, T. P. Vo, J. Lee, Analysis of functionally graded sandwich plates using a new first-order shear deformation theory, European Journal of Mechanics - A/Solids, Vol. 45, pp. 211-225, 2014.
[6]       H.-T. Thai, S.-E. Kim, A simple higher-order shear deformation theory for bending and free vibration analysis of functionally graded plates, Composite Structures, Vol. 96, pp. 165-173, 2013.
[7]       Q. Li, V. P. Iu, K. P. Kou, Three-dimensional vibration analysis of functionally graded material sandwich plates, Journal of Sound and Vibration, Vol. 311, No. 1, pp. 498-515, 2008.
[8]       K. Daszkiewicz, J. Chróścielewski, W. Witkowski, Geometrically Nonlinear Analysis of Functionally Graded Shells Based on 2-D Cosserat Constitutive Model, 2014, Vol. 62, No. 2, 2014.
[9]       R. A. Arciniega, J. N. Reddy, Large deformation analysis of functionally graded shells, International Journal of Solids and Structures, Vol. 44, No. 6, pp. 2036-2052, 2007.
[10]     P. A. Demirhan, V. Taskin, Levy solution for bending analysis of functionally graded sandwich plates based on four variable plate theory, Composite Structures, Vol. 177, pp. 80-95, 2017.
[11]     H. H. Abdelaziz, H. A. Atmane, I. Mechab, L. Boumia, A. Tounsi, A. B. E. Abbas, Static Analysis of Functionally Graded Sandwich Plates Using an Efficient and Simple Refined Theory, Chinese Journal of Aeronautics, Vol. 24, No. 4, pp. 434-448, 2011.
[12]     A. M. Zenkour, A comprehensive analysis of functionally graded sandwich plates: Part 1—Deflection and stresses, International Journal of Solids and Structures, Vol. 42, No. 18-19, pp. 5224-5242, 2005.
[13]     A. M. Zenkour, N. A. Alghamdi, Bending Analysis of Functionally Graded Sandwich Plates Under the Effect of Mechanical and Thermal Loads, Mechanics of Advanced Materials and Structures, Vol. 17, No. 6, pp. 419-432, 2010.
[14]     A. M. Zenkour, N. A. Alghamdi, Thermoelastic bending analysis of functionally graded sandwich plates, Journal of Materials Science, Vol. 43, No. 8, pp. 2574-2589, 2008.
[15]     L. Kurpa, T. Shmatko, J. Awrejcewicz, Vibration analysis of laminated functionally graded shallow shells with clamped cutout of the complex form by the Ritz method and the R-functions theory, Latin American Journal of Solids and Structures, Vol. 16, pp. 1-16, 2019.
[16]     D. T. Dong, D. V. Dung, Nonlinear vibration of functionally graded material sandwich doubly curved shallow shells reinforced by FGM stiffeners. , Part 2: Numerical results and discussion, Vol. 39, No. 4, pp. 329-338, 2017.
[17]     L. Hadji, H. A. Atmane, A. Tounsi, I. Mechab, E. A. Adda Bedia, Free vibration of functionally graded sandwich plates using four-variable refined plate theory, Applied Mathematics and Mechanics, Vol. 32, No. 7, pp. 925-942, 2011.
[18]     M. Di Sciuva, M. Sorrenti, Bending and free vibration analysis of functionally graded sandwich plates: An assessment of the Refined Zigzag Theory, Journal of Sandwich Structures & Materials, Vol. 0, No. 0.
[19]     J. Rouzegar, M. Gholami, Thermo-elastic Bending Analysis of Functionally Graded Sandwich Plates by Hyperbolic Shear Deformation Theory, Scientia Iranica, Vol. 22, No. 2, pp. 561-577, 2015.
[20]     Z. Belabed, A .A.  Bousahla, M.A. Houari, A. .Tounsi, a. S.R..Mahmoud, A new 3-unknown hyperbolic shear deformation theory for vibration of functionally graded sandwich plate. , Earthquakes and Structures, Vol. 14, No. 2, pp. 103-115, 2018.
[21]     A. Attia, A. Tounsi, E. A. Adda, Efficient higher order shear deformation theories for free vibration of functionally graded sandwich plates, in 13ème Congrès de Mécanique (Meknès, MAROC), 2017, pp. 11-14.
[22]     J. L. Mantari, G. C. Soares, Optimized sinusoidal higher order shear deformation theory for the analysis of functionally graded plates and shells, Composites Part B: Engineering, Vol. 56, pp. 126-136, 2014.
[23]     H.-T. Thai, S.-E. Kim, A review of theories for the modeling and analysis of functionally graded plates and shells, Composite Structures, Vol. 128, pp. 70-86, 2015.
[24]     S. Irfan, F. Siddiqui, A review of recent advancements in finite element formulation for sandwich plates, Chinese Journal of Aeronautics, Vol. 32, No. 4, pp. 785-798, 2019.
[25]     F. Tornabene, E. Viola, D. J. Inman, 2-D differential quadrature solution for vibration analysis of functionally graded conical, cylindrical shell and annular plate structures, Journal of Sound and Vibration, Vol. 328, No. 3, pp. 259-290, 2009.
[26]     V. N. Do, C. H. Thai, A modified Kirchhoff plate theory for analyzing thermo-mechanical static and buckling responses of functionally graded material plates, Thin-Walled Structures, Vol. 117, pp. 113-126, 2017.
[27]     C.-P. Wu, K.-H. Chiu, Y.-M. Wang, RMVT-based meshless collocation and element-free Galerkin methods for the quasi-3D analysis of multilayered composite and FGM plates, Composite Structures, Vol. 93, No. 2, pp. 923-943, 2011.
[28]     M. Mohammadi, A. Farajpour, M. Goodarzi, F. Dinari, Thermo-mechanical vibration analysis of annular and circular graphene sheet embedded in an elastic medium, Latin American Journal of Solids and Structures, Vol. 11, pp. 659-682, 2014.
[29]     M. Mohammadi, A. Farajpour, M. Goodarzi, R. Heydarshenas, Levy Type Solution for Nonlocal Thermo-Mechanical Vibration of Orthotropic Mono-Layer Graphene Sheet Embedded in an Elastic Medium, Journal of Solid Mechanics, Vol. 5, No. 2, pp. 116-132, 2013.
[30]     M. Mohammadi, A. Farajpour, M. Goodarzi, H. Mohammadi, Temperature Effect on Vibration Analysis of Annular Graphene Sheet Embedded on Visco-Pasternak Foundati, Journal of Solid Mechanics, Vol. 5, No. 3, pp. 305-323, 2013.
[31]     M. Mohammadi, A. Farajpour, M. Goodarzi, H. Shehni nezhad pour, Numerical study of the effect of shear in-plane load on the vibration analysis of graphene sheet embedded in an elastic medium, Computational Materials Science, Vol. 82, pp. 510-520, 2014.
[32]     M. Mohammadi, A. Farajpour, A. Moradi, M. Ghayour, Shear buckling of orthotropic rectangular graphene sheet embedded in an elastic medium in thermal environment, Composites Part B: Engineering, Vol. 56, pp. 629-637, 2014/01/01/, 2014.
[33]     M. Mohammadi, M. Ghayour, A. Farajpour, Free transverse vibration analysis of circular and annular graphene sheets with various boundary conditions using the nonlocal continuum plate model, Composites Part B: Engineering, Vol. 45, No. 1, pp. 32-42, 2013/02/01/, 2013.
[34]     M. Mohammadi, M. Goodarzi, M. Ghayour, A. Farajpour, Influence of in-plane pre-load on the vibration frequency of circular graphene sheet via nonlocal continuum theory, Composites Part B: Engineering, Vol. 51, pp. 121-129, 2013/08/01/, 2013.
[35]     M. Mohammadi, A. Moradi, M. Ghayour, A. Farajpour, Exact solution for thermo-mechanical vibration of orthotropic mono-layer graphene sheet embedded in an elastic medium, Latin American Journal of Solids and Structures, Vol. 11, pp. 437-458, 2014.
[36]     A. Farajpour, M. Mohammadi, A. R. Shahidi, M. Mahzoon, Axisymmetric buckling of the circular graphene sheets with the nonlocal continuum plate model, Physica E: Low-dimensional Systems and Nanostructures, Vol. 43, No. 10, pp. 1820-1825, 2011/08/01/, 2011.
[37]     A. Farajpour, M. Danesh, M. Mohammadi, Buckling analysis of variable thickness nanoplates using nonlocal continuum mechanics, Physica E Low-Dimensional Systems and Nanostructures, Vol. 44, pp. 719, December 01, 2011, 2011.
[38]     M. Mohammadi, M. Ghayour, A. Farajpour, Analysis of Free Vibration Sector Plate Based on Elastic Medium by using New Version of Differential Quadrature Method, Journal of Simulation and Analysis of Novel Technologies in Mechanical Engineering, Vol. 3, No. 2, pp. 47-56, 2010.
[39]     M. Mohammadi, M. Goodarzi, M. Ghayour, S. Alivand, Small Scale Effect on the Vibration of Orthotropic Plates Embedded in an Elastic Medium and Under Biaxial In-plane Pre-load Via Nonlocal Elasticity Theory, Journal of Solid Mechanics, Vol. 4, No. 2, pp. 128-143, 2012.
[40]     H. Moosavi, M. Mohammadi, A. Farajpour, S. H. Shahidi, Vibration analysis of nanorings using nonlocal continuum mechanics and shear deformable ring theory, Physica E: Low-dimensional Systems and Nanostructures, Vol. 44, No. 1, pp. 135-140, 2011/10/01/, 2011.
[41]     S. R. Asemi, A. Farajpour, H. R. Asemi, M. Mohammadi, Influence of initial stress on the vibration of double-piezoelectric-nanoplate systems with various boundary conditions using DQM, Physica E: Low-dimensional Systems and Nanostructures, Vol. 63, pp. 169-179, 2014/09/01/, 2014.
[42]     S. R. Asemi, M. Mohammadi, A. Farajpour, A study on the nonlinear stability of orthotropic single-layered graphene sheet based on nonlocal elasticity theory, Latin American Journal of Solids and Structures, Vol. 11, pp. 1515-1540, 2014.
[43]     S. R. Asemi, A. Farajpour, M. Mohammadi, Nonlinear vibration analysis of piezoelectric nanoelectromechanical resonators based on nonlocal elasticity theory, Composite Structures, Vol. 116, pp. 703-712, 2014/09/01/, 2014.
[44]     H. R. Asemi, S. R. Asemi, A. Farajpour, M. Mohammadi, Nanoscale mass detection based on vibrating piezoelectric ultrathin films under thermo-electro-mechanical loads, Physica E: Low-dimensional Systems and Nanostructures, Vol. 68, pp. 112-122, 2015/04/01/, 2015.
[45]     M. Danesh, A. Farajpour, M. Mohammadi, Axial vibration analysis of a tapered nanorod based on nonlocal elasticity theory and differential quadrature method, Mechanics Research Communications, Vol. 39, pp. 23-27, 2012.
[46]     A. Farajpour, M. R. Hairi Yazdi, A. Rastgoo, M. Loghmani, M. Mohammadi, Nonlocal nonlinear plate model for large amplitude vibration of magneto-electro-elastic nanoplates, Composite Structures, Vol. 140, pp. 323-336, 2016/04/15/, 2016.
[47]     A. Farajpour, M. Yazdi, A. Rastgoo, M. Mohammadi, A higher-order nonlocal strain gradient plate model for buckling of orthotropic nanoplates in thermal environment, Acta Mechanica, Vol. 227, No. 7, pp. 1849-1867, 2016.
[48]     M. R. Farajpour, A. Rastgoo, A. Farajpour, M. Mohammadi, Vibration of piezoelectric nanofilm-based electromechanical sensors via higher-order non-local strain gradient theory, Micro & Nano Letters, Vol. 11, No. 6, pp. 302-307, 2016.
[49]     M. Goodarzi, M. Mohammadi, A. Farajpour, M. Khooran, Investigation of the Effect of Pre-Stressed on Vibration Frequency of Rectangular Nanoplate Based on a Visco-Pasternak Foundation, Journal of Solid Mechanics, Vol. 6, No. 1, pp. 98-121, 2014.
[50]     M. Mohammadi, A. Rastgoo, Primary and secondary resonance analysis of FG/lipid nanoplate with considering porosity distribution based on a nonlinear elastic medium, Mechanics of Advanced Materials and Structures, Vol. 27, No. 20, pp. 1709-1730, 2020.
[51]     M. Mohammadi, A. Rastgoo, Nonlinear vibration analysis of the viscoelastic composite nanoplate with three directionally imperfect porous FG core, Structural Engineering and Mechanics, Vol. 69, pp. 131, 2019.
[52]     M. Mohammadi, M. Hosseini, M. Shishesaz, A. Hadi, A. Rastgoo, Primary and secondary resonance analysis of porous functionally graded nanobeam resting on a nonlinear foundation subjected to mechanical and electrical loads, European Journal of Mechanics - A/Solids, Vol. 77, pp. 103793, 2019/09/01/, 2019.
[53]     M. Mohammadi, M. Safarabadi, A. Rastgoo, A. Farajpour, Hygro-mechanical vibration analysis of a rotating viscoelastic nanobeam embedded in a visco-Pasternak elastic medium and in a nonlinear thermal environment, Acta Mechanica, Vol. 227, No. 8, pp. 2207-2232, 2016/08/01, 2016.
[54]     M. Safarabadi, M. Mohammadi, A. Farajpour, M. Goodarzi, Effect of Surface Energy on the Vibration Analysis of Rotating Nanobeam, Journal of Solid Mechanics, Vol. 7, No. 3, pp. 299-311, 2015.
[55]     M. Baghani, M. Mohammadi, A. Farajpour, Dynamic and Stability Analysis of the Rotating Nanobeam in a Nonuniform Magnetic Field Considering the Surface Energy, International Journal of Applied Mechanics, Vol. 08, No. 04, pp. 1650048, 2016.
[56]     A. Farajpour, A. Rastgoo, M. Mohammadi, Surface effects on the mechanical characteristics of microtubule networks in living cells, Mechanics Research Communications, Vol. 57, pp. 18-26, 2014/04/01/, 2014.
[57]     A. Farajpour, A. Rastgoo, M. Mohammadi, Vibration, buckling and smart control of microtubules using piezoelectric nanoshells under electric voltage in thermal environment, Physica B: Condensed Matter, Vol. 509, pp. 100-114, 2017/03/15/, 2017.
[58]     A. Farajpour, A. R. Shahidi, M. Mohammadi, M. Mahzoon, Buckling of orthotropic micro/nanoscale plates under linearly varying in-plane load via nonlocal continuum mechanics, Composite Structures, Vol. 94, No. 5, pp. 1605-1615, 2012/04/01/, 2012.
[59]     N. Ghayour, A. Sedaghat, M. Mohammadi, Wave propagation approach to fluid filled submerged visco-elastic finite cylindrical shells, Journal of aerospace science and technology (JAST), Vol. 8, No. 1, pp. -, 2011.
[60]     M. Zamani Nejad, M. Jabbari, A. Hadi, A review of functionally graded thick cylindrical and conical shells, Journal of Computational Applied Mechanics, Vol. 48, No. 2, pp. 357-370, 2017.
[61]     M. Hosseini, M. Shishesaz, A. Hadi, Thermoelastic analysis of rotating functionally graded micro/nanodisks of variable thickness, Thin-Walled Structures, Vol. 134, pp. 508-523, 2019/01/01/, 2019.
[62]     M. Hosseini, M. Shishesaz, K. N. Tahan, A. Hadi, Stress analysis of rotating nano-disks of variable thickness made of functionally graded materials, International Journal of Engineering Science, Vol. 109, pp. 29-53, 2016/12/01/, 2016.
[63]     M. Z. Nejad, N. Alamzadeh, A. Hadi, Thermoelastoplastic analysis of FGM rotating thick cylindrical pressure vessels in linear elastic-fully plastic condition, Composites Part B: Engineering, Vol. 154, pp. 410-422, 2018/12/01/, 2018.
[64]     M. Z. Nejad, A. Rastgoo, A. Hadi, Exact elasto-plastic analysis of rotating disks made of functionally graded materials, International Journal of Engineering Science, Vol. 85, pp. 47-57, 2014/12/01/, 2014.
[65]     M. Gharibi, M. Zamani Nejad, A. Hadi, Elastic analysis of functionally graded rotating thick cylindrical pressure vessels with exponentially-varying properties using power series method of Frobenius, Journal of Computational Applied Mechanics, Vol. 48, No. 1, pp. 89-98, 2017.
[66]     E. Zarezadeh, V. Hosseini, A. Hadi, Torsional vibration of functionally graded nano-rod under magnetic field supported by a generalized torsional foundation based on nonlocal elasticity theory, Mechanics Based Design of Structures and Machines, Vol. 48, No. 4, pp. 480-495, 2020/07/03, 2020.
[67]     M. Noroozi, F. Bakhtiari-Nejad, Nonlinear vibration of a nanocomposite laminated piezoelectric trapezoidal actuator in subsonic airflow under combined electrical and forcing excitations, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 0, No. 0, pp. 0954406220911075.
[68]     A. Barati, A. Hadi, M. Z. Nejad, R. Noroozi, On vibration of bi-directional functionally graded nanobeams under magnetic field, Mechanics Based Design of Structures and Machines, pp. 1-18, 2020.
[69]     A. Barati, M. M. Adeli, A. Hadi, Static Torsion of Bi-Directional Functionally Graded Microtube Based on the Couple Stress Theory Under Magnetic Field, International Journal of Applied Mechanics, Vol. 12, No. 02, pp. 2050021, 2020.
[70]     M. M. Khoram, M. Hosseini, A. Hadi, M. Shishehsaz, Bending Analysis of Bidirectional FGM Timoshenko Nanobeam Subjected to Mechanical and Magnetic Forces and Resting on Winkler–Pasternak Foundation, International Journal of Applied Mechanics, Vol. 0, No. 0, pp. 2050093.
[71]     A. Hadi, A. Rastgoo, N. Haghighipour, A. Bolhassani, Numerical modelling of a spheroid living cell membrane under hydrostatic pressure, Journal of Statistical Mechanics: Theory and Experiment, Vol. 2018, No. 8, pp. 083501, 2018/08/24, 2018.
[72]     M. Shishesaz, M. Hosseini, K. Naderan Tahan, A. Hadi, Analysis of functionally graded nanodisks under thermoelastic loading based on the strain gradient theory, Acta Mechanica, Vol. 228, No. 12, pp. 4141-4168, 2017/12/01, 2017.
[73]     Z. Mazarei, M. Z. Nejad, A. Hadi, Thermo-Elasto-Plastic Analysis of Thick-Walled Spherical Pressure Vessels Made of Functionally Graded Materials, International Journal of Applied Mechanics, Vol. 08, No. 04, pp. 1650054, 2016.
[74]     M. Zamani Nejad, A. Rastgoo, A. Hadi, Effect of Exponentially-Varying Properties on Displacements and Stresses in Pressurized Functionally Graded Thick Spherical Shells with Using Iterative Technique, Journal of Solid Mechanics, Vol. 6, No. 4, pp. 366-377, 2014.
[75]     E. Carrera, S. Brischetto, M. Cinefra, M. Soave, Effects of thickness stretching in functionally graded plates and shells, Composites Part B: Engineering, Vol. 42, No. 2, pp. 123-133, 2011.
[76]     E. Carrera, S. Brischetto, a. A. Robaldo, Variable Kinematic Model for the Analysis of Functionally Graded Material plates, AIAA Journal, Vol. 46, No. 1, pp. 194-203, 2008.
[77]     W. T. Koiter, A consistent first approximation in the general theory of thin elastic shells in Proc. IUTAM Sympon on the Theory of Thin Elastic Shells, North-Holland, Amsterdam, 1960, pp. 12-33.
[78]     N. S. Naik, A. S. Sayyad, 2D analysis of laminated composite and sandwich plates using a new fifth-order plate theory, Latin American Journal of Solids and Structures, Vol. 15, pp. 1-27, 2018.
[79]     A. S. Sayyad, N..S.Naik, New Displacement Model for Accurate Prediction of Transverse Shear Stresses in Laminated and Sandwich Rectangular Plates, ASCE Journal of Aerospace Engineering Vol. 32, No. 5, pp. 1-12, 2019.
[80]     S. M. Ghumare, A. S. Sayyad, Nonlinear Hygro-Thermo-Mechanical Analysis of Functionally Graded Plates Using a Fifth-Order Plate Theory, Arabian Journal for Science and Engineering, Vol. 44, No. 10, pp. 8727-8745, 2019/10/01, 2019.
Volume 52, Issue 1
March 2021
Pages 102-125
  • Receive Date: 05 November 2020
  • Revise Date: 21 November 2020
  • Accept Date: 22 November 2020