[1] M. Murugesan, D. W. Jung, Johnson Cook material and failure model parameters estimation of AISI-1045 medium carbon steel for metal forming applications, Materials, Vol. 12, No. 4, pp. 609, 2019.
[2] W. Zhuang, L. Hua, X. Wang, Y. Liu, L. Dong, H. Dai, The influences of process parameters on the preliminary roll-forging process of the AISI-1045 automobile front axle beam, Journal of Mechanical Science and Technology, Vol. 30, No. 2, pp. 837-846, 2016.
[3] Y.-J. Choi, S.-K. Lee, I.-K. Lee, S. K. Hwang, J. C. Yoon, C. Y. Choi, Y. S. Lee, M.-S. Jeong, Hot forging process design of sprocket wheel and environmental effect analysis, Journal of Mechanical Science and Technology, Vol. 32, No. 5, pp. 2219-2225, 2018.
[4] Y.-J. Kim, C.-H. Choi, A study on life estimation of hot forging die, International Journal of Precision Engineering and Manufacturing, Vol. 10, No. 3, pp. 105-113, 2009.
[5] H.-Y. Kim, J.-J. Kim, N. Kim, Physical and numerical modeling of hot closed-die forging to reduce forging load and die wear, Journal of materials processing technology, Vol. 42, No. 4, pp. 401-420, 1994.
[6] E. Doege, R. Bohnsack, Closed die technologies for hot forging, Journal of Materials Processing Technology, Vol. 98, No. 2, pp. 165-170, 2000.
[7] M. Bakhshi-Jooybari, I. Pillinger, P. Hartley, T. Dean, Finite element simulation and experimental study of hot closed-die upsetting, International Journal of Machine Tools and Manufacture, Vol. 36, No. 9, pp. 1021-1032, 1996.
[8] K.-i. Mori, P. Bariani, B.-A. Behrens, A. Brosius, S. Bruschi, T. Maeno, M. Merklein, J. Yanagimoto, Hot stamping of ultra-high strength steel parts, CIRP Annals, Vol. 66, No. 2, pp. 755-777, 2017.
[9] C. I. Pruncu, C. Hopper, P. A. Hooper, Z. Tan, H. Zhu, J. Lin, J. Jiang, Study of the Effects of Hot Forging on the Additively Manufactured Stainless Steel Preforms, Journal of Manufacturing Processes, Vol. 57, pp. 668-676, 2020.
[10] D.-K. Min, M.-E. Kim, A study on precision cold forging process improvements for the steering yoke of automobiles by the rigid–plastic finite-element method, Journal of materials processing technology, Vol. 138, No. 1-3, pp. 339-342, 2003.
[11] W. R. Wilson, S. R. Schmid, J. Liu, Advanced simulations for hot forging: heat transfer model for use with the finite element method, Journal of materials processing technology, Vol. 155, pp. 1912-1917, 2004.
[12] Y.-j. ZHANG, W.-j. HUI, H. DONG, Hot forging simulation analysis and application of microalloyed steel crankshaft, Journal of Iron and Steel Research, International, Vol. 14, No. 5, pp. 189-194, 2007.
[13] A. Łukaszek-Sołek, J. Krawczyk, T. Śleboda, J. Grelowski, Optimization of the hot forging parameters for 4340 steel by processing maps, Journal of Materials Research and Technology, Vol. 8, No. 3, pp. 3281-3290, 2019.
[14] V. Alimirzaloo, F. R. Biglari, M. H. Sadeghi, P. M. Keshtiban, H. R. Sehat, A novel method for preform die design in forging process of an airfoil blade based on Lagrange interpolation and meta-heuristic algorithm, The International Journal of Advanced Manufacturing Technology, Vol. 102, No. 9-12, pp. 4031-4045, 2019.
[15] Q. Zhang, S. Zhang, J. Li, Three dimensional finite element simulation of cutting forces and cutting temperature in hard milling of AISI H13 steel, Procedia Manufacturing, Vol. 10, pp. 37-47, 2017.
[16] T.-P. Hung, H.-E. Shi, J.-H. Kuang, Temperature modeling of AISI 1045 steel during surface hardening processes, Materials, Vol. 11, No. 10, pp. 1815, 2018.
[17] Dieter GE, Bacon DJ. Mechanical metallurgy. New York: McGraw-hill; 1986 Apr.
[18] Valberg HS. Applied metal forming: including FEM analysis. Cambridge University Press; 2010 Mar 31.
[19] R. Duggirala, R. Shivpuri, S. Kini, S. Ghosh, S. Roy, Computer aided approach for design and optimization of cold forging sequences for automotive parts, Journal of materials processing technology, Vol. 46, No. 1-2, pp. 185-198, 1994.