Slip effect on the unsteady electroosmotic and pressure-driven flows of two-layer fluids in a rectangular microchannel

Document Type: Research Paper


1 department of computer science and engineering, Air university multan campus, Pakistan

2 PhD candidate at ABDUS SALAM SCHOOL OF MATHEMATICAL SCIENCES GC University, Lahore. 68-B, New MuslimTown, Lahore 54600, Pakistan


Abstract of the paper:
Electroosmotic flows of two-layer immiscible Newtonian fluids under the influence of time-dependent pressure gradient in the flow direction and different zeta potentials on the walls have been investigated. The slippage on channel walls is, also, considered in the mathematical model. Solutions to fluid velocities in the transformed domain are determined by using the Laplace transform with respect to the time variable and the classical method of the ordinary differential equations. The inverse Laplace transforms are obtained numerically by using Talbot’s algorithm and the improved Talbot’s algorithm.
Numerical results corresponding to a time-exponential pressure gradient and translational motion with the oscillating velocity of the channel walls have been presented in graphical illustrations in order to study the fluid behaviour. It has been found that the ratio of the dielectric constant of fluid layers and the interface zeta potential difference have a significant influence on the fluid velocities.


Articles in Press, Accepted Manuscript
Available Online from 12 February 2020
  • Receive Date: 19 September 2019
  • Accept Date: 24 September 2019