[1] Paul, W., and P. Sharma, C., 2015, Advances in Wound Healing Materials: Science and Skin Engineering.
[2] Lai-Cheong, J. E., and McGrath, J. A., 2017, "Structure and function of skin, hair and nails," Medicine, 45(6), pp. 347-351.
[3] Gallo, R. L., 2017, "Human Skin Is the Largest Epithelial Surface for Interaction with Microbes," J Invest Dermatol, 137(6), pp. 1213-1214.
[4] Farage, M. A., Miller, K. W., and Maibach, H. I., 2009, Textbook of aging skin, Springer Science & Business Media.
[5] Panich, U., Sittithumcharee, G., Rathviboon, N., and Jirawatnotai, S., 2016, "Ultraviolet Radiation-Induced Skin Aging: The Role of DNA Damage and Oxidative Stress in Epidermal Stem Cell Damage Mediated Skin Aging," Stem Cells Int, 2016, p. 7370642.
[6] D'Orazio, J., Jarrett, S., Amaro-Ortiz, A., and Scott, T., 2013, "UV radiation and the skin," Int J Mol Sci, 14(6), pp. 12222-12248.
[7] Watson, M., Holman, D. M., and Maguire-Eisen, M., 2016, "Ultraviolet Radiation Exposure and Its Impact on Skin Cancer Risk," Semin Oncol Nurs, 32(3), pp. 241-254.
[8] Svobodová, A., Psotová, J., and Walterová, D., 2003, "Natural phenolics in the prevention of UV-induced skin damage. A review," Biomedical Papers, 147(2), pp. 137-145.
[9] Martens, M. C., Seebode, C., Lehmann, J., and Emmert, S., 2018, "Photocarcinogenesis and Skin Cancer Prevention Strategies: An Update," Anticancer Res, 38(2), pp. 1153-1158.
[10] Krutmann, J., Bouloc, A., Sore, G., Bernard, B. A., and Passeron, T., 2017, "The skin aging exposome," J Dermatol Sci, 85(3), pp. 152-161.
[11] Gandhi, S. A., and Kampp, J., 2015, "Skin Cancer Epidemiology, Detection, and Management," Med Clin North Am, 99(6), pp. 1323-1335.
[12] Dakup, P., and Gaddameedhi, S., 2017, "Impact of the Circadian Clock on UV-Induced DNA Damage Response and Photocarcinogenesis," Photochem Photobiol, 93(1), pp. 296-303.
[13] Vileno, B., Lekka, M., Sienkiewicz, A., Jeney, S., Stoessel, G., Lekki, J., Forro, L., and Stachura, Z., 2007, "Stiffness alterations of single cells induced by UV in the presence of nanoTiO2," Environ Sci Technol, 41(14), pp. 5149-5153.
[14] Dupont, E., Gomez, J., and Bilodeau, D., 2013, "Beyond UV radiation: a skin under challenge," Int J Cosmet Sci, 35(3), pp. 224-232.
[15] Cadet, J., and Douki, T., 2018, "Formation of UV-induced DNA damage contributing to skin cancer development," Photochem Photobiol Sci, 17(12), pp. 1816-1841.
[16] Bennet, D., and Kim, S., 2015, "Evaluation of UV radiation-induced toxicity and biophysical changes in various skin cells with photo-shielding molecules," Analyst, 140(18), pp. 6343-6353.
[17] Querleux, B., 2016, Computational Biophysics of the Skin, Jenny Stanford Publishing.
[18] Weihermann, A. C., Lorencini, M., Brohem, C. A., and de Carvalho, C. M., 2017, "Elastin structure and its involvement in skin photoageing," Int J Cosmet Sci, 39(3), pp. 241-247.
[19] Watson, R. E., Gibbs, N. K., Griffiths, C. E., and Sherratt, M. J., 2014, "Damage to skin extracellular matrix induced by UV exposure," Antioxid Redox Signal, 21(7), pp. 1063-1077.
[20] Nishimori, Y., Edwards, C., Pearse, A., Matsumoto, K., Kawai, M., and Marks, R., 2001, "Degenerative alterations of dermal collagen fiber bundles in photodamaged human skin and UV-irradiated hairless mouse skin: possible effect on decreasing skin mechanical properties and appearance of wrinkles," J Invest Dermatol, 117(6), pp. 1458-1463.
[21] Takema, Y., and Imokawa, G., 1998, "The effects of UVA and UVB irradiation on the viscoelastic properties of hairless mouse skin in vivo," Dermatology, 196(4), pp. 397-400.
[22] Biniek, K., Levi, K., and Dauskardt, R. H., 2012, "Solar UV radiation reduces the barrier function of human skin," Proc Natl Acad Sci U S A, 109(42), pp. 17111-17116.
[23] Lekka, M., Pogoda, K., Gostek, J., Klymenko, O., Prauzner-Bechcicki, S., Wiltowska-Zuber, J., Jaczewska, J., Lekki, J., and Stachura, Z., 2012, "Cancer cell recognition--mechanical phenotype," Micron, 43(12), pp. 1259-1266.
[24] Efremov, Y. M., Wang, W. H., Hardy, S. D., Geahlen, R. L., and Raman, A., 2017, "Measuring nanoscale viscoelastic parameters of cells directly from AFM force-displacement curves," Sci Rep, 7(1), p. 1541.
[25] Weaver, D. S., 2000, "Skeletal tissue mechanics," American Journal of Physical Anthropology, 112(3), pp. 435-436.
[26] Zheng, Y., Nguyen, J., Wei, Y., and Sun, Y., 2013, "Recent advances in microfluidic techniques for single-cell biophysical characterization," Lab Chip, 13(13), pp. 2464-2483.
[27] Lee, G. Y., and Lim, C. T., 2007, "Biomechanics approaches to studying human diseases," Trends Biotechnol, 25(3), pp. 111-118.
[28] Suresh, S., Spatz, J., Mills, J. P., Micoulet, A., Dao, M., Lim, C. T., Beil, M., and Seufferlein, T., 2015, "Reprint of: Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria," Acta Biomater, 23 Suppl, pp. S3-15.
[29] Hayot, C. M., Forouzesh, E., Goel, A., Avramova, Z., and Turner, J. A., 2012, "Viscoelastic properties of cell walls of single living plant cells determined by dynamic nanoindentation," J Exp Bot, 63(7), pp. 2525-2540.
[30] Hecht, F. M., Rheinlaender, J., Schierbaum, N., Goldmann, W. H., Fabry, B., and Schaffer, T. E., 2015, "Imaging viscoelastic properties of live cells by AFM: power-law rheology on the nanoscale," Soft Matter, 11(23), pp. 4584-4591.
[31] Kollmannsberger, P., and Fabry, B., 2007, "High-force magnetic tweezers with force feedback for biological applications," Rev Sci Instrum, 78(11), p. 114301.
[32] Wang, Y.-l., and Discher, D. E., 2007, Cell mechanics, Academic press.
[33] Parvanehpour, N., Shojaei, S., Khorramymehr, S., Goodarzi, V., Hejazi, F., and Rezaei, V. F., 2018, "Diabetes can change the viscoelastic properties of lymphocytes," Prog Biomater, 7(3), pp. 219-224.
[34] Heydarian, A., Khorramymehr, S., and Vasaghi-Gharamaleki, B., 2019, "Short-term effects of X-ray on viscoelastic properties of epithelial cells," Proc Inst Mech Eng H, 233(5), pp. 535-543.
[35] Rekik, A., Nguyen, T. T. N., and Gasser, A., 2016, "Multi-level modeling of viscoelastic microcracked masonry," International Journal of Solids and Structures, 81, pp. 63-83.
[36] Lim, C. T., Zhou, E. H., and Quek, S. T., 2006, "Mechanical models for living cells--a review," J Biomech, 39(2), pp. 195-216.
[37] Saunders, D. W., 1978, "Creep and relaxation of nonlinear viscoelastic materials," Polymer, 19(1), p. 118.
[38] Lundström, R., 1984, "Local vibrations—Mechanical impedance of the human hand's glabrous skin," Journal of Biomechanics, 17(2), pp. 137-144.
[39] Lee, C. H., Wu, S. B., Hong, C. H., Yu, H. S., and Wei, Y. H., 2013, "Molecular Mechanisms of UV-Induced Apoptosis and Its Effects on Skin Residential Cells: The Implication in UV-Based Phototherapy," Int J Mol Sci, 14(3), pp. 6414-6435.
[40] Gentile, M., Latonen, L., and Laiho, M., 2003, "Cell cycle arrest and apoptosis provoked by UV radiation-induced DNA damage are transcriptionally highly divergent responses," Nucleic Acids Res, 31(16), pp. 4779-4790.
[41] Salucci, S., Burattini, S., Battistelli, M., Baldassarri, V., Maltarello, M. C., and Falcieri, E., 2012, "Ultraviolet B (UVB) irradiation-induced apoptosis in various cell lineages in vitro," Int J Mol Sci, 14(1), pp. 532-546.
[42] Pustišek, N., and Šitum, M., 2011, "UV-radiation, apoptosis and skin," Collegium antropologicum, 35(2), pp. 339-341.
[43] Kulms, D., Dussmann, H., Poppelmann, B., Stander, S., Schwarz, A., and Schwarz, T., 2002, "Apoptosis induced by disruption of the actin cytoskeleton is mediated via activation of CD95 (Fas/APO-1)," Cell Death Differ, 9(6), pp. 598-608.
[44] Povea-Cabello, S., Oropesa-Avila, M., de la Cruz-Ojeda, P., Villanueva-Paz, M., de la Mata, M., Suarez-Rivero, J. M., Alvarez-Cordoba, M., Villalon-Garcia, I., Cotan, D., Ybot-Gonzalez, P., and Sanchez-Alcazar, J. A., 2017, "Dynamic Reorganization of the Cytoskeleton during Apoptosis: The Two Coffins Hypothesis," Int J Mol Sci, 18(11).
[45] Mills, J. C., Stone, N. L., and Pittman, R. N., 1999, "Extranuclear apoptosis. The role of the cytoplasm in the execution phase," J Cell Biol, 146(4), pp. 703-708.
[46] Phillip, J. M., Aifuwa, I., Walston, J., and Wirtz, D., 2015, "The Mechanobiology of Aging," Annu Rev Biomed Eng, 17, pp. 113-141.
[47] Fletcher, D. A., and Mullins, R. D., 2010, "Cell mechanics and the cytoskeleton," Nature, 463(7280), pp. 485-492.
[48] Schillers, H., Walte, M., Urbanova, K., and Oberleithner, H., 2010, "Real-time monitoring of cell elasticity reveals oscillating myosin activity," Biophys J, 99(11), pp. 3639-3646.
[49] Bai, G., Li, Y., Chu, H. K., Wang, K., Tan, Q., Xiong, J., and Sun, D., 2017, "Characterization of biomechanical properties of cells through dielectrophoresis-based cell stretching and actin cytoskeleton modeling," Biomed Eng Online, 16(1), p. 41.
[50] Wang, X., Liu, H., Zhu, M., Cao, C., Xu, Z., Tsatskis, Y., Lau, K., Kuok, C., Filleter, T., McNeill, H., Simmons, C. A., Hopyan, S., and Sun, Y., 2018, "Mechanical stability of the cell nucleus - roles played by the cytoskeleton in nuclear deformation and strain recovery," J Cell Sci, 131(13).
[51] Kletter, Y., Riklis, I., Shalit, I., and Fabian, I., 1991, "Enhanced repopulation of murine hematopoietic organs in sublethally irradiated mice after treatment with ciprofloxacin," Blood, 78(7), pp. 1685-1691.
[52] Janmey, P. A., 1991, "Mechanical properties of cytoskeletal polymers," Current Opinion in Cell Biology, 3(1), pp. 4-11.
[53] Lele, T. P., Dickinson, R. B., and Gundersen, G. G., 2018, "Mechanical principles of nuclear shaping and positioning," J Cell Biol, 217(10), pp. 3330-3342.
[54] Dogterom, M., and Koenderink, G. H., 2019, "Actin-microtubule crosstalk in cell biology," Nat Rev Mol Cell Biol, 20(1), pp. 38-54.
[55] Emri, G., Paragh, G., Tosaki, A., Janka, E., Kollar, S., Hegedus, C., Gellen, E., Horkay, I., Koncz, G., and Remenyik, E., 2018, "Ultraviolet radiation-mediated development of cutaneous melanoma: An update," J Photochem Photobiol B, 185, pp. 169-175.
[56] McDaniel, D., Farris, P., and Valacchi, G., 2018, "Atmospheric skin aging-Contributors and inhibitors," J Cosmet Dermatol, 17(2), pp. 124-137.
[57] Azzouz, D., Khan, M. A., Sweezey, N., and Palaniyar, N., 2018, "Two-in-one: UV radiation simultaneously induces apoptosis and NETosis," Cell Death Discov, 4, p. 51.
[58] Schmid, I., 2012, Flow Cytometry: Recent Perspectives, BoD–Books on Demand.
[59] Shi, K., Gao, Z., Shi, T. Q., Song, P., Ren, L. J., Huang, H., and Ji, X. J., 2017, "Reactive Oxygen Species-Mediated Cellular Stress Response and Lipid Accumulation in Oleaginous Microorganisms: The State of the Art and Future Perspectives," Front Microbiol, 8, p. 793.
[60] De Jager, T. L., Cockrell, A. E., and Du Plessis, S. S., 2017, "Ultraviolet Light Induced Generation of Reactive Oxygen Species," Adv Exp Med Biol, 996, pp. 15-23.
[61] Almeida-Marrero, V., van de Winckel, E., Anaya-Plaza, E., Torres, T., and de la Escosura, A., 2018, "Porphyrinoid biohybrid materials as an emerging toolbox for biomedical light management," Chemical Society Reviews, 47(19), pp. 7369-7400.
[62] Hale, J. P., Winlove, C. P., and Petrov, P. G., 2011, "Effect of hydroperoxides on red blood cell membrane mechanical properties," Biophys J, 101(8), pp. 1921-1929.
[63] Suarez-Huerta, N., Mosselmans, R., Dumont, J. E., and Robaye, B., 2000, "Actin depolymerization and polymerization are required during apoptosis in endothelial cells," Journal of Cellular Physiology, 184(2), pp. 239-245.
[64] Grzanka, D., Domaniewski, J., Grzanka, A., and Zuryn, A., 2006, "Ultraviolet radiation (UV) induces reorganization of actin cytoskeleton in CHOAA8 cells," Neoplasma, 53(4), pp. 328-332.