[1] H. J. Kwon, S. H. Yeon, K. H. Lee, and K. H. Lee, “Evaluation of Building Energy Saving Through the Development of Venetian Blinds ’ Optimal Control Algorithm According to the Orientation and Window-to-Wall Ratio,” Int. J. Thermophys., 2018.
[2] K. Petrichenko, D. Ürge-vorsatz, and L. F. Cabeza, “Energy & Buildings Modeling global and regional potentials for building-integrated solar energy generation,” vol. 198, pp. 329–339, 2019.
[3] G. Feng, D. Chi, X. Xu, B. Dou, Y. Sun, and Y. Fu, “ScienceDirect ScienceDirect Study on the Influence of Window-wall Ratio on the Energy Consumption of Nearly Zero Energy Buildings,” Procedia Eng., vol. 205, pp. 730–737, 2017.
[4] G. Syngros, C. A. Balaras, and D. G. Koubogiannis, “Embodied CO 2 Emissions in Building Construction Materials of Hellenic Dwellings,” Procedia Environ. Sci., vol. 38, pp. 500–508, 2017.
[5] M. Mahdavi Adeli, S. Farahat, and F. Sarhaddi, “Analysis and Optimization using Renewable Energies to Get Net-Zero Energy Building for Warm Climate,” J. Comput. Appl. Mech., vol. 48, no. 2, pp. 331–344, 2017.
[6] X. Su and X. Zhang, “Environmental performance optimization of window – wall ratio for different window type in hot summer and cold winter zone in China based on life cycle assessment,” Energy Build., vol. 42, pp. 198–202, 2010.
[7] R. Azari, S. Garshasbi, P. Amini, H. Rashed-ali, and Y. Mohammadi, “Multi-Objective Optimization of Building Envelope Design for Life Cycle Environmental Performance,” Energy Build., 2016.
[8] G. Lobaccaro, A. H. Wiberg, G. Ceci, M. Manni, N. Lolli, and U. Berardi, “PT,” Energy Build., 2018.
[9] F. Goia, “Search for the optimal window-to-wall ratio in office buildings in different European climates and the implications on total energy saving potential,” Sol. Energy, vol. 132, pp. 467–492, Jul. 2016.
[10] A. Charles, W. Maref, and C. M. Ouellet-plamondon, “Case study of the upgrade of an existing office building for low energy consumption and low carbon emissions,” Energy Build., 2018.
[11] R. Moschetti, H. Brattebø, and M. Sparrevik, “Exploring the pathway from zero-energy to zero-emission building solutions: A case study of a Norwegian office building,” Energy Build., 2019.
[12] S. Pathirana, A. Rodrigo, and R. Halwatura, “Effect of building shape , orientation , window to wall ratios and zones on energy efficiency and thermal comfort of naturally ventilated houses in tropical climate,” Int. J. Energy Environ. Eng., no. 0123456789, 2019.
[13] N. Harmati and Z. Magyar, “Influence of WWR , WG and glazing properties on the annual heating and cooling energy demand in buildings,” Energy Procedia, vol. 78, pp. 2458–2463, 2015.
[14] M. Alwetaishi, “Journal of King Saud University – Engineering Sciences Impact of glazing to wall ratio in various climatic regions : A case study,” J. King Saud Univ. - Eng. Sci., pp. 1–13, 2017.
[15] Z. S. Zomorodian and M. Tahsildoost, “Energy and carbon analysis of double skin façades in the hot and dry climate,” J. Clean. Prod., vol. 197, pp. 85–96, 2018.
[16] J. Khalesi and N. Goudarzi, “Thermal comfort investigation of stratified indoor environment in displacement ventilation: Climate-adaptive building with smart windows,” Sustain. Cities Soc., vol. 46, p. 101354, Apr. 2019.
[17] M. Valizadeh, F. Sarhaddi, and M. Mahdavi Adeli, “Exergy performance assessment of a linear parabolic trough photovoltaic thermal collector,” Renew. Energy, vol. 138, pp. 1028–1041, Aug. 2019.
[18] J. Yazdanpanahi, F. Sarhaddi, and M. Mahdavi Adeli, “Experimental investigation of exergy efficiency of a solar photovoltaic thermal (PVT) water collector based on exergy losses,” Sol. Energy, vol. 118, pp. 197–208, Aug. 2015.
[19] M. Mahdavi Adeli, F. Sobhnamayan, S. Farahat, M. Abolhasan Alavi, and F. Sarhaddi, “Experimental Performance Evaluation of a Photovoltaic Thermal,” Strojniški Vestn. - J. Mech. Eng., vol. 58, no. 5, pp. 309–318, 2012.
[20] A. Namjoo, F. Sarhaddi, F. Sobhnamayan, M. A. Alavi, M. Mahdavi Adeli, and S. Farahat, “Exergy performance analysis of solar photovoltaic thermal (PV/T) air collectors in terms of exergy losses,” J. Energy Inst., vol. 84, no. 3, 2011.
[21] M. Mahdavi Adeli, F. Sobhnamayan, M. Abolhasan Alavi, S. Farahat, and F. Sarhaddi, “Experimental exergetic performance evaluation of a photovoltaic thermal (PV/T) air collector and comparison with numerical simulation,” Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng., vol. 225, no. 3, pp. 161–172, 2011.
[22] F. Sarhaddi, S. Farahat, H. Ajam, A. Behzadmehr, and M. Mahdavi Adeli, “An improved thermal and electrical model for a solar photovoltaic thermal (PV/T) air collector,” Appl. Energy, vol. 87, no. 7, pp. 2328–2339, Jul. 2010.
[23] EnergyPlus, “The board of US Department of Energy (DOE). October 1, (2013). ,” EnergyPlus Eng. Ref., 2016.
[24] N. M. Patil and M. B. Kumthekar, “Low Carbon Building,” Int. Res. J. Eng. Technol., vol. 3, no. 12, 2016.