[1] D. Aquilano, F. Otálora, L. Pastero, J. M. García-Ruiz, C. o. Materials, Three study cases of growth morphology in minerals: halite, calcite and gypsum, Progress in Crystal Growth, Vol. 62, No. 2, pp. 227-251, 2016.
[2] G. Van Rosmalen, P. Daudey, W. Marchee, An analysis of growth experiments of gypsum crystals in suspension, Journal of Crystal Growth, Vol. 52, pp. 801-811, 1981.
[3] J. Moghadasi, M. Jamialahmadi, H. Müller-Steinhagen, A. Sharif, Scale formation in oil reservoir and production equipment during water injection (Kinetics of CaSO4 and CaCO3 crystal growth and effect on formation damage), in Proceeding of, Society of Petroleum Engineers, pp.
[4] A. Helalizadeh, H. Müller-Steinhagen, M. Jamialahmadi, Mixed salt crystallisation fouling, Chemical Engineering and Processing: Process Intensification, Vol. 39, No. 1, pp. 29-43, 2000.
[5] A. Helalizadeh, H. Müller-Steinhagen, M. Jamialahmadi, Mathematical modelling of mixed salt precipitation during convective heat transfer and sub-cooled flow boiling, Chemical Engineering Science, Vol. 60, No. 18, pp. 5078-5088, 2005.
[6] S. N. Kazi, G. G. Duffy, X. D. Chen, Fouling and fouling mitigation on heated metal surfaces, Desalination, Vol. 288, pp. 126-134, 2012.
[7] M. H. Maddahi, M. S. Hatamipour, M. Jamialahmadi, Experimental study of calcium sulfate fouling in a heat exchanger during liquid-solid fluidized bed with cylindrical particles, International Journal of Thermal Sciences, Vol. 125, pp. 11-22, 2018.
[8] M. R. Malayeri, M. R. Jalalirad, Mitigation of crystallization fouling in a single heated tube using projectiles of different sizes and hardness, Heat Transfer Engineering, Vol. 35, No. 16-17, pp. 1418-1426, 2014.
[9] R. Steinhagen, H. Müller-Steinhagen, K. Maani, Problems and costs due to heat exchanger fouling in New Zealand industries, Heat transfer engineering, Vol. 14, No. 1, pp. 19-30, 1993.
[10] Y. Lv, M. Y. Liu, L. F. Hui, A. N. Pavlenko, A. S. Surtaev, V. S. Serdyukov, Heat Transfer and Fouling Rate at Boiling on Superhydrophobic Surface with TiO2 Nanotube-Array Structure, Journal of Engineering Thermophysics, Vol. 28, No. 2, pp. 163-176, 2019.
[11] Q. Zhenhua, C. Yongchang, M. A. Chongfang, Experimental study of fouling on heat transfer surface during forced convective heat transfer, Chinese Journal of Chemical Engineering, Vol. 16, No. 4, pp. 535-540, 2008.
[12] A. Al-Janabi, M. R. Malayeri, O. Badran, Performance of shot peened surfaces subject to crystallization fouling, International Journal of Thermal Sciences, Vol. 111, pp. 379-389, 2017.
[13] L.-C. Wang, S.-F. Li, L.-B. Wang, K. Cui, Q.-L. Zhang, H.-B. Liu, G. Li, Relationships between the characteristics of CaCO3 fouling and the flow velocity in smooth tube, Experimental Thermal and Fluid Science, Vol. 74, pp. 143-159, 2016.
[14] B. O. Hasan, E. A. Jwair, R. A. Craig, The effect of heat transfer enhancement on the crystallization fouling in a double pipe heat exchanger, Experimental Thermal and Fluid Science, Vol. 86, pp. 272-280, 2017.
[15] T. Hou, Y. Chen, Z. Wang, C. Ma, Experimental study of fouling process and antifouling effect in convective heat transfer under ultrasonic treatment, Applied Thermal Engineering, Vol. 140, pp. 671-678, 2018.
[16] A. Zangeneh, A. Vatani, Z. Fakhroeian, S. M. Peyghambarzadeh, Experimental study of forced convection and subcooled flow boiling heat transfer in a vertical annulus using different novel functionalized ZnO nanoparticles, Applied Thermal Engineering, Vol. 109, pp. 789-802, 2016.
[17] D. A. Skoog, D. A. West, F. J. Holler, Analytical Chemistry, 6th ed, Sounders College Publishing 1992.
[18] J. Fernández-Seara, F. J. Uhia, J. Sieres, Laboratory practices with the Wilson plot method, Experimental Heat Transfer, Vol. 20, No. 2, pp. 123-135, 2007.
[19] S. M. Peyghambarzadeh, A. Vatani, M. Jamialahmadi, Experimental study of micro-particle fouling under forced convective heat transfer, Applied Thermal Engineering, Vol. 29, No. 4, pp. 713-724, 2012.
[20] M. M. Sarafraz, S. M. Peyghambarzadeh, Experimental study on subcooled flow boiling heat transfer to water–diethylene glycol mixtures as a coolant inside a vertical annulus, Experimental Thermal and Fluid Science, Vol. 50, pp. 154-162, 2013.
[21] J. P. Holman, 2002, Heat Transfer-Si Units-Sie, Tata McGraw-Hill Education,
[22] B. S. Massey, 2006, Mechanics of Fluids Taylor & Francis, 8ed.
[23] S. M. Peyghambarzadeh, A. Vatani, M. Jamialahmadi, Application of asymptotic model for the prediction of fouling rate of calcium sulfate under subcooled flow boiling, Applied Thermal Engineering, Vol. 39, pp. 105-113, 2012.
[24] R. J. Moffat, Using uncertainty analysis in the planning of an experiment, Journal of Fluids Engineering, Vol. 107, No. 2, pp. 173-178, 1985.
[25] A. Vosough, S. M. Peyghambarzadeh, M. R. Assari, Influence of thermal shock on the mitigation of calcium sulfate crystallization fouling under subcooled flow boiling condition, Applied Thermal Engineering, pp. 114434, 2019.
[26] M. S. Abd-Elhady, M. R. Jalalirad, M. R. Malayeri, Influence of injected projectiles on the induction period of crystallization fouling, Heat Transfer Engineering, Vol. 35, No. 3, pp. 232-245, 2014.
[27] S. M. Peyghambarzadeh, N. Bahrami, Statistical analysis of calcium sulfate scaling under boiling heat transfer, Applied Thermal Engineering, Vol. 53, No. 1, pp. 108-113, 2013.
[28] S. H. Najibi, H. Müller-Steinhagen, M. Jamialahmadi, Calcium sulphate scale formation during subcooled flow boiling, Chemical Engineering Science, Vol. 52, No. 8, pp. 1265-1284, 1997.