[1] H. J. Lee, J. J. Lee, Time delay control of a shape memory alloy actuator, Smart Materials and Structures, Vol. 13, No. 1, pp. 227, 2004.
[2] G. Webb, A. Kurdila, D. Lagoudas, Adaptive hysteresis model for model reference control with actuator hysteresis, Journal of Guidance, Control, and Dynamics, Vol. 23, No. 3, pp. 459-465, 2000.
[3] X. Zhang, P. Feng, Y. He, T. Yu, Q. Sun, Experimental study on rate dependence of macroscopic domain and stress hysteresis in NiTi shape memory alloy strips, International Journal of Mechanical Sciences, Vol. 52, No. 12, pp. 1660-1670, 2010.
[4] I. D. Mayergoyz, 2003, Mathematical models of hysteresis and their applications, Academic Press,
[5] M. Brokate, J. Sprekels, 2012, Hysteresis and phase transitions, Springer Science & Business Media,
[6] G.-L. She, F.-G. Yuan, Y.-R. Ren, H.-B. Liu, W.-S. J. C. S. Xiao, Nonlinear bending and vibration analysis of functionally graded porous tubes via a nonlocal strain gradient theory, Vol. 203, pp. 614-623, 2018.
[7] V. Hassani, T. Tjahjowidodo, T. N. Do, A survey on hysteresis modeling, identification and control, Mechanical systems and signal processing, Vol. 49, No. 1-2, pp. 209-233, 2014.
[8] C. Lexcellent, H. Tobushi, Internal loops in pseudoelastic behaviour of Ti-Ni shape memory alloys: experiment and modelling, Meccanica, Vol. 30, No. 5, pp. 459-466, 1995.
[9] D. Grandi, U. Stefanelli, A phenomenological model for microstructure-dependent inelasticity in shape-memory alloys, Meccanica, Vol. 49, No. 9, pp. 2265-2283, 2014.
[10] A. Doroudchi, M. R. Zakerzadeh, M. Baghani, Developing a fast response SMA-actuated rotary actuator: modeling and experimental validation, Meccanica, Vol. 53, No. 1-2, pp. 305-317, 2018.
[11] W. Raczka, J. Konieczny, M. Sibielak, J. Kowal, Discrete Preisach Model of a Shape Memory Alloy Actuator, Solid State Phenomena, Vol. 248, pp. 227, 2016.
[12] S. Choi, Y. Han, Hysteretic behavior of a magnetorheological fluid: experimental identification, Acta mechanica, Vol. 180, No. 1-4, pp. 37-47, 2005.
[13] X. Wang, G. Alici, X. Tan, Modeling and inverse feedforward control for conducting polymer actuators with hysteresis, Smart materials and structures, Vol. 23, No. 2, pp. 025015, 2013.
[14] M. Al Janaideh, S. Rakheja, C.-Y. Su, A generalized Prandtl–Ishlinskii model for characterizing the hysteresis and saturation nonlinearities of smart actuators, Smart Materials and Structures, Vol. 18, No. 4, pp. 045001, 2009.
[15] H. Sayyaadi, M. R. Zakerzadeh, Position control of shape memory alloy actuator based on the generalized Prandtl–Ishlinskii inverse model, Mechatronics, Vol. 22, No. 7, pp. 945-957, 2012.
[16] M. R. Zakerzadeh, H. Sayyaadi, Precise position control of shape memory alloy actuator using inverse hysteresis model and model reference adaptive control system, Mechatronics, Vol. 23, No. 8, pp. 1150-1162, 2013.
[17] G. Song, Robust position regulation of a shape memory alloy wire actuator, Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, Vol. 216, No. 3, pp. 301-308, 2002.
[18] N. B. Kha, K. K. Ahn, Position control of shape memory alloy actuators by using self tuning fuzzy PID controller, in Proceeding of, IEEE, pp. 1-5.
[19] B. Kasemi, A. G. Muthalif, M. M. Rashid, S. Fathima, Fuzzy-PID controller for semi-active vibration control using magnetorheological fluid damper, Procedia Engineering, Vol. 41, pp. 1221-1227, 2012.
[20] B. K. Sahu, T. K. Pati, J. R. Nayak, S. Panda, S. K. Kar, A novel hybrid LUS–TLBO optimized fuzzy-PID controller for load frequency control of multi-source power system, International Journal of Electrical Power & Energy Systems, Vol. 74, pp. 58-69, 2016.
[21] R. K. Sahu, S. Panda, P. C. Pradhan, Design and analysis of hybrid firefly algorithm-pattern search based fuzzy PID controller for LFC of multi area power systems, International Journal of Electrical Power & Energy Systems, Vol. 69, pp. 200-212, 2015.
[22] M. Al Janaideh, S. Rakheja, C.-Y. Su, An analytical generalized Prandtl–Ishlinskii model inversion for hysteresis compensation in micropositioning control, IEEE/ASME Transactions on mechatronics, Vol. 16, No. 4, pp. 734-744, 2011.
[23] M. Al Janaideh, C.-Y. Su, S. Rakheja, Development of the rate-dependent Prandtl–Ishlinskii model for smart actuators, Smart Materials and Structures, Vol. 17, No. 3, pp. 035026, 2008.
[24] M. Al Janaideh, O. Aljanaideh, Further results on open-loop compensation of rate-dependent hysteresis in a magnetostrictive actuator with the Prandtl-Ishlinskii model, Mechanical Systems and Signal Processing, Vol. 104, pp. 835-850, 2018.
[25] M. R. Zakerzadeh, H. Sayyaadi, Experimental comparison of some phenomenological hysteresis models in characterizing hysteresis behavior of shape memory alloy actuators, Journal of intelligent material systems and structures, Vol. 23, No. 12, pp. 1287-1309, 2012.
[26] H. Basaeri, A. Yousefi-Koma, M. R. Zakerzadeh, S. S. Mohtasebi, Experimental study of a bio-inspired robotic morphing wing mechanism actuated by shape memory alloy wires, Mechatronics, Vol. 24, No. 8, pp. 1231-1241, 2014.
[27] A. Falvo, F. Furgiuele, C. Maletta, Hysteresis modeling of two-way shape memory effect in NiTi alloys, Meccanica, Vol. 43, No. 2, pp. 165-172, 2008.
[28] M. Hassanalian, A. Abdelkefi, M. Wei, S. Ziaei-Rad, A novel methodology for wing sizing of bio-inspired flapping wing micro air vehicles: theory and prototype, Acta Mechanica, Vol. 228, No. 3, pp. 1097-1113, 2017.
[29] S. Barbarino, O. Bilgen, R. M. Ajaj, M. I. Friswell, D. J. Inman, A review of morphing aircraft, Journal of intelligent material systems and structures, Vol. 22, No. 9, pp. 823-877, 2011.
[30] J. Sun, Q. Guan, Y. Liu, J. Leng, Morphing aircraft based on smart materials and structures: A state-of-the-art review, Journal of Intelligent material systems and structures, Vol. 27, No. 17, pp. 2289-2312, 2016.
[31] S. Barbarino, E. S. Flores, R. M. Ajaj, I. Dayyani, M. I. Friswell, A review on shape memory alloys with applications to morphing aircraft, Smart Materials and Structures, Vol. 23, No. 6, pp. 063001, 2014.
[32] A. Sofla, D. Elzey, H. Wadley, Shape morphing hinged truss structures, Smart Materials and Structures, Vol. 18, No. 6, pp. 065012, 2009.
[33] H. Basaeri, A. Yousefi-Koma, M. Zakerzadeh, S. Mohtasebi, Development of a bio inspired 2 DOF morphing wing actuated by shape memory alloy, in Proceeding of, 9-10.
[34] C.-C. Kao, R.-F. Fung, Using the modified PSO method to identify a Scott-Russell mechanism actuated by a piezoelectric element, Mechanical Systems and Signal Processing, Vol. 23, No. 5, pp. 1652-1661, 2009.
[35] N. Kwok, Q. Ha, M. Nguyen, J. Li, B. Samali, Bouc–Wen model parameter identification for a MR fluid damper using computationally efficient GA, ISA transactions, Vol. 46, No. 2, pp. 167-179, 2007.
[36] A. Mozaffari, A. Fathi, N. L. Azad, Preferred design of recurrent neural network architecture using a multiobjective evolutionary algorithm with un-supervised information recruitment: a paradigm for modeling shape memory alloy actuators, Meccanica, Vol. 49, No. 6, pp. 1297-1326, 2014.
[37] N. F. Rad, A. Yousefi-Koma, R. Mirjalili, H. Basaeri, Hysteresis modeling of SMA in the tail of a bioinspired vehicle by ANFIS, in Proceeding of, IEEE, pp. 445-448.
[38] N. F. Rad, M. Ayati, H. Basaeri, A. Yousefi-Koma, F. Tajdari, M. Jokar, Hysteresis modeling for a shape memory alloy actuator using adaptive neuro-fuzzy inference system, in Proceeding of, IEEE, pp. 320-324.
[39] M. Jokar, M. Ayati, A. Yousefi-Koma, H. Basaeri, Experiment-based hysteresis identification of a shape memory alloy–embedded morphing mechanism via stretched particle swarm optimization algorithm, Journal of Intelligent Material Systems and Structures, Vol. 28, No. 19, pp. 2781-2792, 2017.
[40] L. Ljung, Perspectives on system identification, Annual Reviews in Control, Vol. 34, No. 1, pp. 1-12, 2010.
[41] D. E. Goldberg, J. H. Holland, Genetic algorithms and machine learning, Machine learning, Vol. 3, No. 2, pp. 95-99, 1988.