Axially Forced Vibration Analysis of Cracked a Nanorod

Document Type : Research Paper


Civil Engineering, Engineering Fac., Bursa Technical University, Bursa,Turkey


study presents axially forced vibration of a cracked nanorod under harmonic external dynamically load. In constitutive equation of problem, the nonlocal elasticity theory is used. The Crack is modelled as an axial spring in the crack section. In the axial spring model, the nonrod separates two sub-nanorods and the flexibility of the axial spring represents the effect of the crack. Boundary condition of the nanorod is selected as fixed-free and a harmonic load is subjected at the free end of the nanorod. Governing equation of the problem is obtained by using equilibrium conditions. In the solution of the governing equation, analytical solution is presented and exact expressions are tained for the forced vibration problem. On the solution method, the separation of variable is implemented and the forced vibration displacements are obtained exactly. In the open literature, the forced vibration analysis of the cracked nanorod has not been investigated broadly. The objective of this study is to fill this blank for cracked nanorods. In numerical results, influences of the crack parameter, position of crack, the nonlocal parameter and dynamic load parameters on forced vibration responses of the cracked nanorod are presented and discussed.


Main Subjects

  1. Eringen A.C., 1972, Nonlocal polar elastic continua, International Journal of Engineering Science, 10(1): 1-16.
  2. Eringen A.C., 1983, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, Journal of Applied Physics, 54: 4703–10.
  3. Toupin R.A., 1962 Elastic materials with couple stresses. Archive for Rational Mechanics and Analysis, 11(1): 385–414.
  4. Lam D.C.C., Yang F., Chong A.C.M., Wang J. and Tong P., 2003, Experiments and theory in strain gradient elasticity, Journal of the Mechanics and Physics of Solids, 51(8): 1477–508.
  5. Mindlin R.D. and Tiersten H.F., 1962, Effects of couple-stresses in linear elasticity, Archive for Rational Mechanics and Analysis, 11(1): 415–48.
  6. Mindlin R.D., 1963, Influence of couple-stresses on stress concentrations, Experimental mechanics, 3(1): 1–7.
  7. Yang F., Chong A., Lam D. and Tong P., 2002, Couple stress based strain gradient theory for elasticity, International Journal of Solids and Structures. 39(10): 2731-2743.
  8. Park S.K. and Gao X.L., 2006, Bernoulli–Euler beam model based on a modified couple stress theory, Journal of Micromechanics and Microengineering, 16(11): 2355-2359.
  9. Hasanyan D.J., Batra R.C. and Harutyunyan S., 2008, Pull-in instabilities in functionally graded microthermoelectromechanical systems, J Therm Stresses, 31: 1006–21.
  10. Loya J., López-Puente J., Zaera R. and Fernández-Sáez J., 2009, Free transverse vibrations of cracked nanobeams using a nonlocal elasticity model, Journal of Applied Physics, 105(4):044309.
  11. Civalek Ö., Demir Ç. and Akgöz B., 2009, Static analysis of single walled carbon nanotubes (SWCNT) based on Eringen’s nonlocal elasticity theory, International Journal Of Engineering & Applied Sciences, 1(2): 47-56.
  12. Reddy J.N., 2010, Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates, International Journal of Engineering Science, 48(11): 1507-1518.
  13. Reddy J.N., 2011, Microstructure-dependent couple stress theories of functionally graded beams, Journal of the Mechanics and Physics of Solids, 59(11): 2382-2399.
  14. Hasheminejad B.S.M., Gheshlaghi B., Mirzaei Y., Abbasion S., 2011, Free transverse vibrations of cracked nanobeams with surface effects, Thin Solid Films, 519: 2477-2482.
  15. Liu P. and  Reddy J.N., 2011, A Nonlocal  curved beam model based on a modified couple stress theory, International Journal of Structural Stability and Dynamics, 11(3):495-512.
  16. Ansari R., Gholami R. and Sahmani S., 2011, Free vibration analysis of size-dependent functionally graded microbeams based on the strain gradient Timoshenko beam theory, Composite Structures, 94(1): 221-228.
  17. Wang C.M., Xiang Y., Yang J. and Kitipornchai S. 2012, Buckling of nano-rings/arches based on nonlocal elasticity. International Journal of Applied Mechanics, 4(03):1250025.
  18. Asghari M., Ahmadian M.T., Kahrobaiyan M.H. and Rahaeifard M., 2010, On the size-dependent behavior of functionally graded micro-beams. Materials and Design, 31(5):2324-2329.
  19. Belkorissat I., Houari M.S.A., Tounsi A., Bedia E.A. and Mahmoud, S. R., 2015. On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model, Steel and Composite Structures, 18(4):1063-1081.
  20. Akgöz B. and Civalek Ö., 2013, Free vibration analysis of axially functionally graded tapered Bernoulli-Euler  microbeams based on the modified couple stress theory. Composite Structures, 98:314-322.
  21. Akgöz B. and Civalek Ö., 2014, Longitudinal vibration analysis for microbars based on strain gradient elasticity theory, Journal of Vibration and Control, 20(4): 606-616.
  22. Karličić D., Cajić M., Murmu T. and Adhikari, S., 2015, Nonlocal longitudinal vibration of viscoelastic coupled double-nanorod systems, European Journal of Mechanics-A/Solids, 49:183-196.
  23. Kocatürk T. and Akbaş Ş.D. (2013), Wave propagation in a microbeam based on the modified couple stress theory, Structural Engineering and Mechanics, 46(3): 417-431.
  24. Sedighi H.M. 2014, The influence of small scale on the pull-in behavior of nonlocal nanobridges considering surface effect, Casimir and Van der Waals attractions, International Journal of Applied Mechanics, 6(03): 1450030.
  25. Al-Basyouni K.S., Tounsi A. and Mahmoud S.R., 2015, Size dependent bending and vibration analysis of functionally graded micro beams based on modified couple stress theory and neutral surface position, Composite Structures, 125: 621-630.
  26. Şimşek M., 2016, Axial Vibration Analysis of a Nanorod Embedded in Elastic Medium Using Nonlocal Strain Gradient Theory, Journal of Cukurova University Faculty of Engineering, 31(1): 213-222.
  27. Chaht F.L., Kaci A., Houari M.S.A., Tounsi A., Bég O.A. and Mahmoud S.R., 2015, Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect, Steel and Composite Structures, 18(2): 425-442.
  28. Akbaş Ş.D., 2016, Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium. Smart Structures and Systems, 18(6): 1125-1143.
  29. Akbaş Ş.D., 2017, Forced vibration analysis of functionally graded nanobeams, International Journal of Applied Mechanics, 9(07): 1750100.
  30. Arda M. and Aydogdu M., 2017, Longitudinal Vibration of CNTs Viscously Damped in Span, International Journal Of Engineering & Applied Sciences, 9(2): 22-38.
  31. Eren M. and Aydogdu M. 2018, Finite strain nonlinear longitudinal vibration of nanorods. Advances in Nano Research, 6(4): 323-337.
  32. Uzun B., Numanoglu H. and Civalek O. (2018), Free vibration analysis of BNNT with different cross-Sections via nonlocal FEM. Journal of Computational Applied Mechanics, 49(2): 252-260.
  33. Arda M. and Aydogdu M. (2018), Longitudinal magnetic field effect on torsional vibration of carbon nanotubes. Journal of Computational Applied Mechanics, 49(2): 304-313.
  34. Zargaripoor A., Daneshmehr A., Isaac Hosseini I. and Rajabpoor A. (2018), Free vibration analysis of nanoplates made of functionally graded materials based on nonlocal elasticity theory using finite element method. Journal of Computational Applied Mechanics, 49(1): 86-101.
  35. Ke L.L., Wang Y.S., Yang J. and Kitipornchai S., 2012, Nonlinear free vibration of size-dependent functionally graded microbeams, International International Journal of Engineering Science, 50(1): 256-267.
  36. Kordani N., Fereidoon A., Divsalar M. and Farajpour A. (2016), Forced vibration of piezoelectric nanowires based on nonlocal elasticity theory. Journal of Computational Applied Mechanics, 47(2):137-150.
  37. Zakeri M., Attarnejad R. and Ershadbakhsh A.M. (2016), Analysis of Euler-Bernoulli nanobeams: A mechanical-based solution. Journal of Computational Applied Mechanics, 47(2):159-180.
  38. Ebrahimi F. and Shafiei N. 2016, “Application of Eringen’s nonlocal elasticity theory for vibration analysis of rotating functionally graded nanobeams”, Smart Struct. Syst., Int. J., 17(5), 837-857.
  39. Ebrahimi F., Barati M.R. and Haghi P. 2017, “Wave propagation analysis of size-dependent rotating inhomogeneous nanobeams based on nonlocal elasticity theory”, J. Vib. Control, 1077546317711537.
  40. Ahouel M., Houari M.S.A., Bedia E.A. and Tounsi A. 2016, “Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept”, Steel Compos. Struct., Int. J., 20(5): 963-981.
  41. Aissani K., Bouiadjra M.B., Ahouel M. and Tounsi A. 2015, “A new nonlocal hyperbolic shear deformation theory for nanobeams embedded in an elastic medium”, Struct. Eng. Mech., Int. J., 55(4): 743-763.
  42. Bellifa H., Benrahou K.H., Bousahla A.A., Tounsi A. and Mahmoud, S.R. 2017, “A nonlocal zeroth-order shear deformation theory for nonlinear postbuckling of nanobeams”, Struct. Eng. Mech., Int. J., 62(6). 695-702.
  43. Hadji L., Zouatnia N., Meziane M.A.A. and Kassoul A. 2017, A simple quasi-3D sinusoidal shear deformation theory with stretching effect for carbon nanotube-reinforced composite beams resting on elastic foundation. Earthquakes and Structures, 13(5): 509-518.
  44. Hosseini M., Shishesaz M. and Hadi, A. 2019, Thermoelastic analysis of rotating functionally graded micro/nanodisks of variable thickness. Thin-Walled Structures, 134, 508-523.
  45. Hosseini M., Shishesaz M., Tahan K.N. and Hadi A. 2016, Stress analysis of rotating nano-disks of variable thickness made of functionally graded materials. International Journal of Engineering Science, 109, 29-53.
  46. Hadi A., Nejad M.Z. and Hosseini M. 2018, Vibrations of three-dimensionally graded nanobeams. International Journal of Engineering Science, 128, 12-23.
  47. Hadi A., Nejad M.Z., Rastgoo A. and Hosseini, M. 2018, Buckling analysis of FGM Euler-Bernoulli nano-beams with 3D-varying properties based on consistent couple-stress theory. Steel and Composite Structures, 26(6), 663-672.
  48. Akbaş Ş.D. 2016, Static analysis of a nano plate by using generalized differential quadrature method. International Journal of Engineering & Applied Sciences, 8(2), 30-39.
  49. Shishesaz M., Hosseini M., Tahan K.N. and Hadi A. 2017, Analysis of functionally graded nanodisks under thermoelastic loading based on the strain gradient theory. Acta Mechanica, 228(12), 4141-4168.
  50. Moradi A., Yaghootian A., Jalalvand M. and Ghanbarzadeh A. 2018, Magneto-Thermo mechanical vibration analysis of FG nanoplate embedded on Visco Pasternak foundation. Journal of Computational Applied Mechanics, 49(2), 395-407.
  51. Nejad M.Z., Hadi A., Omidvari A. and Rastgoo A. 2018, Bending analysis of bi-directional functionally graded Euler-Bernoulli nano-beams using integral form of Eringen's non-local elasticity theory. Structural Engineering and Mechanics, 67(4), 417-425.
  52. Hasheminejad BSM Gheshlaghi B Mirzaei Y Abbasion S (2011), Free transverse vibrations of cracked nanobeams with surface effects. Thin Solid Films 519:  2477-2482.
  53. Loya J López-Puente J Zaera R Fernández-Sáez J (2009), Free transverse vibrations of cracked nanobeams using a nonlocal elasticity model. Journal of Applied Physics 105: 044309.
  54. Roostai H and Haghpanahi M (2014), Vibration of nanobeams of different boundary conditions with multiple cracks based on nonlocal elasticity theory. Applied Mathematical Modelling 38:1159–1169.
  55. Liu SJ Qi SH Zhang WM (2013), Vibration behavior of a cracked micro-cantilever beam under electrostatic excitation. Zhendong yu Chongji/Journal of Vibration and Shock 32:41-45.
  56. Torabi K and Nafar Dastgerdi J (2012), An analytical method for free vibration analysis of Timoshenko beam theory applied to cracked nanobeams using a nonlocal elasticity model. Thin Solid Films 520: 6595-6602.
  57. Wang K Wang B (2015), Timoshenko beam model for the vibration analysis of a cracked nanobeam with surface energy. Journal of Vibration and Control Doi: 10.1177/1077546313513054.
  58. Tadi Beni Y Jafari A Razavi H (2015), Size Effect on Free Transverse Vibration of Cracked Nano-beams using Couple Stress Theory. International Journal of Engineering 28:296-304.
  59. Yaylı MO Çerçevik AE (2015), Axial vibration analysis of cracked nanorods with arbitrary boundary conditions. Journal of Vibroengineering 17:2907-2921.
  60. Stamenković M Karličić D Goran J and Kozić P (2016), Nonlocal forced vibration of a double single-walled carbon nanotube system under the influence of an axial magnetic field. Journal of Mechanics of Materials and Structures 11:279-307.
  61. Peng X-L Li X-F. Tang G-J. Shen Z-B (2015), Effect of scale parameter on the deflection of a nonlocal beam and application to energy release rate of a crack. ZAMM - Journal of Applied Mathematics and Mechanics 95: 1428–1438.
  62. Akbaş ŞD (2016), Analytical solutions for static bending of edge cracked micro beams. Structural Engineering and Mechanics, 59: 579-599.
  63. Akbaş ŞD (2017), Free vibration of edge cracked functionally graded microscale beams based on the modified couple stress theory. International Journal of Structural Stability and Dynamics 17: 1750033.
  64. Akbaş Ş.D. (2018), Forced vibration analysis of cracked nanobeams. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40(8), 392.
  65. Akbaş Ş. D. (2018), Forced vibration analysis of cracked functionally graded microbeams. Advances in Nano Research, 6(1), 39-55.
  66. Hsu J.C., Lee H.L. and Chang W.J. (2011), Longitudinal vibration of cracked nanobeams using nonlocal elasticity theory. Current Applied Physics, 11(6): 1384-1388.
  67. Rahmani O., Hosseini S.A H., Noroozi Moghaddam M.H. and Fakhari Golpayegani I. (2015), Torsional vibration of cracked nanobeam based on nonlocal stress theory with various boundary conditions: an analytical study. International Journal of Applied Mechanics, 7(03): 1550036.
  68. Sourki R. and Hoseini, S.A.H. (2016), Free vibration analysis of size-dependent cracked microbeam based on the modified couple stress theory. Applied Physics A, 122(4): 413.
  69. Singh K.V. (2009), Transcendental inverse eigenvalue problems in damage parameter estimation. Mechanical Systems and Signal Processing, 23(6): 1870-1883.
Volume 50, Issue 1
June 2019
Pages 63-68
  • Receive Date: 13 May 2019
  • Revise Date: 26 May 2019
  • Accept Date: 01 June 2019