Design, Evaluation and Prototyping of a New Robotic Mechanism for Ultrasound Imaging

Document Type : Research Paper


1 Department of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran

2 Department of Mechanical Engineering, University of Tehran, Tehran, Iran


This paper presents a new robotic mechanism for ultrasound imaging. The device is placed on a patient's body by an operator, and an ultrasound expert controls the motions of the device to obtain ultrasound images. The paper focuses on the robotic mechanism that performs ultrasound imaging. The design of the mechanism is based on two approaches to produce center of motion for an ultrasound probe. This center of motion which is located on the tip of the ultrasound probe helps to create clear ultrasound images. Detailed designs, kinematic relationships, prototyping and ultrasound imaging tests are presented. A novel cabling mechanism is developed to create the center of motion required for ultrasound imaging. The mechanism provides all four necessary motions for ultrasound imaging by using two actuators which significantly reduces the weight of the device to make it suitable for portable ultrasound applications. The device has been successfully used for ultrasound imaging of kidney, gallbladder, liver, ovary and uterus of volunteer patients.


Main Subjects

[1]           D. R. Swerdlow, K. Cleary, E. Wilson, B. Azizi-Koutenaei, R. Monfaredi, Robotic Arm–Assisted Sonography: Review of Technical Developments and Potential Clinical Applications, American Journal of Roentgenology, Vol. 208, No. 4, pp. 733-738, 2017.
[2]           F. Najafi, N. Sepehri, A novel hand-controller for remote ultrasound imaging, Mechatronics, Vol. 18, No. 10, pp. 578-590, 2008.
[3]           A. Abbasi Moshaii, F. Najafi, A review of robotic mechanisms for ultrasound examinations, Industrial Robot: An International Journal, Vol. 41, No. 4, pp. 373-380, 2014.
[4]           M. Moeinzadeh, S. Davaria, F. Najafi, M. Haghighi-Yazdi, Design and Fabrication of a Portable 1-DOF Robotic Device for Indentation Tests, Journal of comptational applied mechanics, Vol. 48, No. 2, pp. 171-184, 2017.
[5]           C. Delgorge, F. Courrèges, L. A. Bassit, C. Novales, C. Rosenberger, N. Smith-Guerin, C. Brù, R. Gilabert, M. Vannoni, G. Poisson, A tele-operated mobile ultrasound scanner using a light-weight robot, IEEE Transactions on Information Technology in Biomedicine, Vol. 9, No. 1, pp. 50-58, 2005.
[6]           J. W. Sublett, B. J. Dempsey, A. C. Weaver, Design and implementation of a digital teleultrasound system for real-time remote diagnosis, In Computer-Based Medical Systems, 1995., Proceedings of the Eighth IEEE Symposium on, pp. 292-298. IEEE, 1995.
[7]           E. Degoulange, L. Urbain, P. Caron, S. Boudet, J. Gariépy, J.-L. Megnien, F. Pierrot, E. Dombre, HIPPOCRATE: an intrinsically safe robot for medical applications, In Intelligent Robots and Systems, 1998. Proceedings., 1998 IEEE/RSJ International Conference on, vol. 2, pp. 959-964. IEEE, 1998..
[8]           M. R. Lavaei, M. Mahjoob, A. Behjat, Stiffness control of a legged robot equipped with a serial manipulator in stance phase, JOURNAL OF COMPUTATIONAL APPLIED MECHANICS, Vol. 48, No. 1, pp. 27-38, 2017.
[9]           S. E. Salcudean, W. H. Zhu, P. Abolmaesumi, S. Bachmann, P. D. Lawrence, A robot system for medical ultrasound,  in: Robotics Research, Eds., pp. 195-202: Springer, 2000.
[10]         K. Masuda, E. Kimura, N. Tateishi, K. Ishihara, Three dimensional motion mechanism of ultrasound probe and its application for tele-echography system, In Intelligent Robots and Systems, 2001. Proceedings. 2001 IEEE/RSJ International Conference on, vol. 2, pp. 1112-1116. IEEE, 2001.
[11]         M. Mitsuishi, S. i. Warisawa, T. Tsuda, T. Higuchi, N. Koizumi, H. Hashizume, K. Fujiwara, Remote ultrasound diagnostic system, In Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE International Conference on, vol. 2, pp. 1567-1574. IEEE, 2001.
[12]         N. Koizumi, S. i. Warisawa, H. Hashizume, M. Mitsuishi, Continuous Path Controller of Slave Manipulator for Remote Ultrasound Diagnostic System, Journal of the Robotics Society of Japan, Vol. 23, No. 5, pp. 619-628, 2005.
[13]         M. Khorram, S. A. A. Moosavian, Dynamics modeling and stable gait planning of a quadruped robot in walking over uneven terrains, Journal of Computational Applied Mechanics, Vol. 46, No. 2, pp. 205-220, 2015.
[14]         A. Vilchis, J. Troccaz, P. Cinquin, K. Masuda, F. Pellissier, A new robot architecture for tele-echography, IEEE Transactions on Robotics and Automation, Vol. 19, No. 5, pp. 922-926, 2003.
[15]         S. Lessard, I. Bonev, P. Bigras, L.-G. Durand, G. Soulez, G. Cloutier, J. A. De Guise, Parallel robot for medical 3D-ultrasound imaging, In Industrial Electronics, 2006 IEEE International Symposium on, vol. 4, pp. 3102-3107. IEEE, 2006.
[16]         J. Avila-Vilchis, A. Garcia-Torres, TERMI robot, In Electronics, Robotics and Automotive Mechanics Conference, 2007. CERMA 2007, pp. 464-469. IEEE, 2007.
[17]         F. Najafi, N. Sepehri, A robotic wrist for remote ultrasound imaging, Mechanism and machine theory, Vol. 46, No. 8, pp. 1153-1170, 2011.
[18]         R. Nakadate, Y. Tokunaga, J. Solis, A. Takanishi, E. Minagawa, M. Sugawara, K. Niki, A. Saito, Development of robot assisted measurement system for abdominal ultrasound diagnosis, In Biomedical Robotics and Biomechatronics (BioRob), 2010 3rd IEEE RAS and EMBS International Conference on, pp. 367-372. IEEE, 2010.
[19]         K. Ito, S. Sugano, H. Iwata, Wearable echography robot for trauma patient, In Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on, pp. 4794-4799. IEEE, 2010.
[20]         R. Monfaredi, E. Wilson, B. Azizi koutenaei, B. Labrecque, k. Leroy, J. Goldie, E. Louis, D. Swerdlow, K. Cleary, Robot-assisted ultrasound imaging: overview and development of a parallel telerobotic system, Minimally Invasive Therapy & Allied Technologies, Vol. 24, No. 1, pp. 54-62, 2015.
[21]         A. Krupa, D. Folio, C. Novales, P. Vieyres, T. Li, Robotized tele-echography: an assisting visibility tool to support expert diagnostic, IEEE Systems Journal, Vol. 10, No. 3, pp. 974-983, 2016.
[22]         K. Masuda, Y. Takachi, Y. Urayama, T. Yoshinaga, Development of support system to handle ultrasound probe by coordinated motion with medical robot, In Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE, pp. 4519-4522. IEEE, 2011.
[23]         P. M. Loschak, Y. Tenzer, A. Degirmenci, R. D. Howe, A 4-DOF robot for positioning ultrasound imaging catheters, in Proceeding of, American Society of Mechanical Engineers, pp. V05AT08A046-V05AT08A046, 2015.
[24]         H. Ren, X. Gu, K. L. Tan, Human-compliant body-attached soft robots towards automatic cooperative ultrasound imaging, in Proceeding of, IEEE, pp. 653-658, 2016.
 [25]       L. Lindenroth, A. Soor, J. Hutchinson, A. Shafi, J. Back, K. Rhode, H. Liu, Design of a soft, parallel end-effector applied to robot-guided ultrasound interventions, in Proceeding of, IEEE, pp. 3716-3721, 2017.
[26]        X. Guan, H. Wu, X. Hou, Q. Teng, S. Wei, T. Jiang, J. Zhang, B. Wang, J. Yang, L. Xiong, Study of a 6DOF robot assisted ultrasound scanning system and its simulated control handle, in Proceeding of, IEEE, pp. 469-474, 2017.
Volume 50, Issue 1
June 2019
Pages 108-117
  • Receive Date: 07 May 2018
  • Revise Date: 29 October 2018
  • Accept Date: 30 October 2018